BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2525050)

  • 1. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals.
    Koutalos Y; Ebrey TG; Tsuda M; Odashima K; Lien T; Park MH; Shimizu N; Derguini F; Nakanishi K; Gilson HR
    Biochemistry; 1989 Mar; 28(6):2732-9. PubMed ID: 2525050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinylidene chromophore hydrolysis from mammalian visual and non-visual opsins.
    Hong JD; Salom D; Choi EH; Du SW; Tworak A; Smidak R; Gao F; Solano YJ; Zhang J; Kiser PD; Palczewski K
    J Biol Chem; 2024 Mar; 300(3):105678. PubMed ID: 38272218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin.
    Han M; Groesbeek M; Sakmar TP; Smith SO
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13442-7. PubMed ID: 9391044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential rhodopsin regeneration in photoreceptor membranes is correlated with variations in membrane properties.
    Boesze-Battaglia K; Allen C
    Biosci Rep; 1998 Feb; 18(1):29-38. PubMed ID: 9653516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (1)H and (13)C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin.
    Creemers AF; Kiihne S; Bovee-Geurts PH; DeGrip WJ; Lugtenburg J; de Groot HJ
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9101-6. PubMed ID: 12093898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.
    Srinivasan S; Fernández-Sampedro MA; Morillo M; Ramon E; Jiménez-Rosés M; Cordomí A; Garriga P
    Biophys J; 2018 Mar; 114(6):1285-1294. PubMed ID: 29590586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A short story on how chromophore is hydrolyzed from rhodopsin for recycling.
    Hong JD; Palczewski K
    Bioessays; 2023 Sep; 45(9):e2300068. PubMed ID: 37454357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength dependent cis-trans isomerization in vision.
    Kim JE; Tauber MJ; Mathies RA
    Biochemistry; 2001 Nov; 40(46):13774-8. PubMed ID: 11705366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3, 4-didehydroretinal chromophore of goldfish porphyropsin.
    Tsin AT; Santos FR
    J Exp Zool; 1985 Aug; 235(2):181-6. PubMed ID: 4056688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the Stability of Recombinant Human Green Cone Pigment.
    Owen TS; Salom D; Sun W; Palczewski K
    Biochemistry; 2018 Feb; 57(6):1022-1030. PubMed ID: 29320632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Retinal Configuration on the Protein-Chromophore Interactions in Bistable Jumping Spider Rhodopsin-1.
    Church JR; Olsen JMH; Schapiro I
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HEK293S cells have functional retinoid processing machinery.
    Brueggemann LI; Sullivan JM
    J Gen Physiol; 2002 Jun; 119(6):593-612. PubMed ID: 12034766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color Tuning in Bovine Rhodopsin through Polarizable Embedding.
    Di Prima D; Reinholdt P; Kongsted J
    J Phys Chem B; 2024 Mar; 128(12):2864-2873. PubMed ID: 38489248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence of the Retinal Chromophore in Microbial and Animal Rhodopsins.
    Nikolaev DM; Shtyrov AA; Vyazmin SY; Vasin AV; Panov MS; Ryazantsev MN
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of Abnormal Chromophore-Protein Interaction for Е181К Rhodopsin Mutation: Computer Molecular Dynamics Study.
    Feldman T; Ostrovsky M; Kholmurodov K; Yasuoka K
    Open Biochem J; 2012; 6():94-102. PubMed ID: 22930661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.
    Coto PB; Strambi A; Ferré N; Olivucci M
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17154-9. PubMed ID: 17090682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites.
    Nicolini C; Sivozhelezov V; Bavastrello V; Bezzerra T; Scudieri D; Spera R; Pechkova E
    Materials (Basel); 2011 Aug; 4(8):1483-1518. PubMed ID: 28824154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila melanogaster rhodopsin Rh7 is a UV-to-visible light sensor with an extraordinarily broad absorption spectrum.
    Sakai K; Tsutsui K; Yamashita T; Iwabe N; Takahashi K; Wada A; Shichida Y
    Sci Rep; 2017 Aug; 7(1):7349. PubMed ID: 28779161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning.
    Zheng L; Farrell DM; Fulton RM; Bagg EE; Salcedo E; Manino M; Britt SG
    J Biol Chem; 2015 Sep; 290(36):21951-61. PubMed ID: 26195627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.