These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
879 related articles for article (PubMed ID: 2525063)
1. Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Wilmot CA; Szczepanik AM Brain Res; 1989 May; 487(2):288-98. PubMed ID: 2525063 [TBL] [Abstract][Full Text] [Related]
2. The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Ichikawa J; Meltzer HY Eur J Pharmacol; 1990 Feb; 176(3):371-4. PubMed ID: 2184042 [TBL] [Abstract][Full Text] [Related]
3. Extrastriatal dopamine D2 receptors: distribution, pharmacological characterization and region-specific regulation by clozapine. Janowsky A; Neve KA; Kinzie JM; Taylor B; de Paulis T; Belknap JK J Pharmacol Exp Ther; 1992 Jun; 261(3):1282-90. PubMed ID: 1534844 [TBL] [Abstract][Full Text] [Related]
4. Effects of acute and chronic clozapine and haloperidol on in vitro release of acetylcholine and dopamine from striatum and nucleus accumbens. Compton DR; Johnson KM J Pharmacol Exp Ther; 1989 Feb; 248(2):521-30. PubMed ID: 2918468 [TBL] [Abstract][Full Text] [Related]
5. Differential alteration of striatal D-1 and D-2 receptors induced by the long-term administration of haloperidol, sulpiride or clozapine to rats. Jenner P; Rupniak NM; Marsden CD Psychopharmacology Suppl; 1985; 2():174-81. PubMed ID: 3159009 [TBL] [Abstract][Full Text] [Related]
6. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Ossowska K; Pietraszek M; Wardas J; Nowak G; Wolfarth S Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):280-7. PubMed ID: 10344526 [TBL] [Abstract][Full Text] [Related]
7. Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Rupniak NM; Hall MD; Mann S; Fleminger S; Kilpatrick G; Jenner P; Marsden CD Biochem Pharmacol; 1985 Aug; 34(15):2755-63. PubMed ID: 4040370 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of chronic treatment with haloperidol and clozapine on the level of preprosomatostatin mRNA in the striatum, nucleus accumbens, and frontal cortex of the rat. Salin P; Mercugliano M; Chesselet MF Cell Mol Neurobiol; 1990 Mar; 10(1):127-44. PubMed ID: 1970756 [TBL] [Abstract][Full Text] [Related]
9. Chronic treatment with clozapine or haloperidol differentially regulates dopamine and serotonin receptors in rat brain. O'Dell SJ; La Hoste GJ; Widmark CB; Shapiro RM; Potkin SG; Marshall JF Synapse; 1990; 6(2):146-53. PubMed ID: 2237777 [TBL] [Abstract][Full Text] [Related]
11. 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. Breese GR; Duncan GE; Napier TC; Bondy SC; Iorio LC; Mueller RA J Pharmacol Exp Ther; 1987 Jan; 240(1):167-76. PubMed ID: 3100767 [TBL] [Abstract][Full Text] [Related]
12. Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats. Rupniak NM; Kilpatrick G; Hall MD; Jenner P; Marsden CD Psychopharmacology (Berl); 1984; 84(4):512-9. PubMed ID: 6441952 [TBL] [Abstract][Full Text] [Related]
13. Subchronic administration of clozapine, but not haloperidol or metoclopramide, decreases dopamine D2 receptor messenger RNA levels in the nucleus accumbens and caudate-putamen in rats. See RE; Lynch AM; Sorg BA Neuroscience; 1996 May; 72(1):99-104. PubMed ID: 8730709 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of dopamine antagonists on evoked dopamine release from slices of striatum and nucleus accumbens in rats. Yamada S; Takaki T; Yokoo H; Tanaka M J Pharm Pharmacol; 1995 Mar; 47(3):259-62. PubMed ID: 7602493 [TBL] [Abstract][Full Text] [Related]
15. Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol. Seeger TF; Thal L; Gardner EL Psychopharmacology (Berl); 1982; 76(2):182-7. PubMed ID: 6805029 [TBL] [Abstract][Full Text] [Related]
16. Effects of haloperidol and low dose clozapine on the acetylcholine turnover rate in rat forebrain structures. Bluth R; Langnickel R Biomed Biochim Acta; 1985; 44(10):1531-9. PubMed ID: 4084256 [TBL] [Abstract][Full Text] [Related]
17. Effects of ritanserin on haloperidol-induced dopamine (D2) receptor up-regulation in the rat. Szczepanik AM; Wilmot CA Neurosci Lett; 1997 Aug; 231(2):91-4. PubMed ID: 9291148 [TBL] [Abstract][Full Text] [Related]
18. Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Altar CA; Wasley AM; Neale RF; Stone GA Brain Res Bull; 1986 Apr; 16(4):517-25. PubMed ID: 2872945 [TBL] [Abstract][Full Text] [Related]
19. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Robertson GS; Fibiger HC Neuroscience; 1992; 46(2):315-28. PubMed ID: 1347406 [TBL] [Abstract][Full Text] [Related]
20. Differences in the time course of haloperidol-induced up-regulation of rat striatal and mesolimbic dopamine receptors. Prosser ES; Csernansky JG; Hollister LE Life Sci; 1988; 43(8):715-20. PubMed ID: 2901023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]