These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25250689)

  • 1. Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography.
    Lee SA; Kang HS; Park JK; Lee S
    Adv Mater; 2014 Nov; 26(44):7521-8. PubMed ID: 25250689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays.
    Chen Z; Li P; Zhang S; Chen Y; Liu P; Duan H
    Nanotechnology; 2019 Aug; 30(33):335201. PubMed ID: 31013483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel 3D Au nanohole arrays with outstanding optical properties.
    Ai B; Yu Y; Möhwald H; Zhang G
    Nanotechnology; 2013 Jan; 24(3):035303. PubMed ID: 23263405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography.
    Lee S; Shin J; Lee YH; Park JK
    ACS Nano; 2010 Dec; 4(12):7175-84. PubMed ID: 21090674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X; Ma X; Shi E; Lu P; Dou L; Zhang X; Wang H
    Small; 2020 Mar; 16(11):e1906459. PubMed ID: 32072751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses.
    Zhu Y; Yuan W; Sun H; Yu Y
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28805680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor.
    Zhang J; Irannejad M; Yavuz M; Cui B
    Nanoscale Res Lett; 2015 Dec; 10(1):944. PubMed ID: 26058510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between extraordinary optical transmission and surface-enhanced Raman scattering in subwavelength metallic nanohole arrays.
    Li Q; Yang Z; Ren B; Xu H; Tian Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7188-91. PubMed ID: 21137894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput nanohole array based system to monitor multiple binding events in real time.
    Ji J; O'Connell JG; Carter DJ; Larson DN
    Anal Chem; 2008 Apr; 80(7):2491-8. PubMed ID: 18307360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The extraordinary optical transmission and sensing properties of Ag/Ti composite nanohole arrays.
    Larson S; Carlson D; Ai B; Zhao Y
    Phys Chem Chem Phys; 2019 Feb; 21(7):3771-3780. PubMed ID: 30706926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography.
    Valsecchi C; Gomez Armas LE; Weber de Menezes J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional amplified spontaneous emissions from Ag nanohole array with high diffraction orders.
    Liu Y; Lv F; Xiao J; Wu D; La J; Yin X; Wang Y; Wang W
    Opt Lett; 2023 Feb; 48(3):843-846. PubMed ID: 36723603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary sensitivity enhancement of Ag-Au alloy nanohole arrays for label-free detection of
    Hwang CSH; Ahn MS; Jeong KH
    Biomed Opt Express; 2021 May; 12(5):2734-2743. PubMed ID: 34123500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from discrete patches to plasmonic nanohole array by glancing angle deposition on nanosphere monolayers.
    Bradley L; Ye D; Luong HM; Zhao Y
    Nanotechnology; 2020 May; 31(20):205301. PubMed ID: 31995523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.
    Lee S; Ongko A; Kim HY; Yim SG; Jeon G; Jeong HJ; Lee S; Kwak M; Yang SY
    Nanotechnology; 2016 Aug; 27(31):315301. PubMed ID: 27334794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-level micro/nanotexturing by three-dimensionally controlled photofluidization and its use in plasmonic applications.
    Kang HS; Lee S; Lee SA; Park JK
    Adv Mater; 2013 Oct; 25(38):5490-7. PubMed ID: 23857634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting.
    Kim YC; Do YR
    Opt Express; 2005 Mar; 13(5):1598-603. PubMed ID: 19495034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.