These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 25251278)

  • 1. Fish locomotion: recent advances and new directions.
    Lauder GV
    Ann Rev Mar Sci; 2015; 7():521-45. PubMed ID: 25251278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergence of undulatory swimming kinematics across a diversity of fishes.
    Di Santo V; Goerig E; Wainwright DK; Akanyeti O; Liao JC; Castro-Santos T; Lauder GV
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34853171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.
    Flammang BE; Lauder GV; Troolin DR; Strand T
    Proc Biol Sci; 2011 Dec; 278(1725):3670-8. PubMed ID: 21543357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion.
    Xiong G; Lauder GV
    Zoology (Jena); 2014 Aug; 117(4):269-81. PubMed ID: 24925455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulence: does vorticity affect the structure and shape of body and fin propulsors?
    Webb PW; Cotel AJ
    Integr Comp Biol; 2010 Dec; 50(6):1155-66. PubMed ID: 21558264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.
    Weng J; Zhu Y; Du X; Yang G; Hu D
    Bioinspir Biomim; 2019 Dec; 15(1):016007. PubMed ID: 31694000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics of ribbon-fin locomotion in the bowfin, Amia calva.
    Jagnandan K; Sanford CP
    J Exp Zool A Ecol Genet Physiol; 2013 Dec; 319(10):569-83. PubMed ID: 24039242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.