These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 25251278)

  • 21. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volumetric imaging of fish locomotion.
    Flammang BE; Lauder GV; Troolin DR; Strand TE
    Biol Lett; 2011 Oct; 7(5):695-8. PubMed ID: 21508026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical insights into optimality and resonance in fish swimming.
    Kohannim S; Iwasaki T
    J R Soc Interface; 2014 Mar; 11(92):20131073. PubMed ID: 24430125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wave energy and swimming performance shape coral reef fish assemblages.
    Fulton CJ; Bellwood DR; Wainwright PC
    Proc Biol Sci; 2005 Apr; 272(1565):827-32. PubMed ID: 15888415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
    Li G; Liu H; Müller UK; Voesenek CJ; van Leeuwen JL
    Proc Biol Sci; 2021 Dec; 288(1964):20211601. PubMed ID: 34847768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fish-inspired segment models for undulatory steady swimming.
    Akanyeti O; Di Santo V; Goerig E; Wainwright DK; Liao JC; Castro-Santos T; Lauder GV
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35487201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal chordwise stiffness profiles of self-propelled flapping fins.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2016 Sep; 11(5):056016. PubMed ID: 27627992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model.
    Wolf Z; Jusufi A; Vogt DM; Lauder GV
    Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuna robotics: hydrodynamics of rapid linear accelerations.
    Thandiackal R; White CH; Bart-Smith H; Lauder GV
    Proc Biol Sci; 2021 Feb; 288(1945):20202726. PubMed ID: 33593180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy.
    Curet OM; Patankar NA; Lauder GV; Maciver MA
    J R Soc Interface; 2011 Jul; 8(60):1041-50. PubMed ID: 21177695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force scaling and efficiency of elongated median fin propulsion.
    Uddin MI; Garcia GA; Curet OM
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35366647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H; Curet OM
    Bioinspir Biomim; 2017 Jun; 12(3):036015. PubMed ID: 28481218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot.
    Berlinger F; Saadat M; Haj-Hariri H; Lauder GV; Nagpal R
    Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33264757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.