These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25251324)

  • 21. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes.
    Georgi C; Hartmann N; Gokus T; Green AA; Hersam MC; Hartschuh A
    Chemphyschem; 2008 Jul; 9(10):1460-4. PubMed ID: 18506857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Temperature Single Carbon Nanotube Spectroscopy of sp
    He X; Gifford BJ; Hartmann NF; Ihly R; Ma X; Kilina SV; Luo Y; Shayan K; Strauf S; Blackburn JL; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2017 Nov; 11(11):10785-10796. PubMed ID: 28958146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model of hopping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence spectra and their dependence on the excitation power and temperature.
    Baranowski M; Latkowska M; Kudrawiec R; Misiewicz J
    J Phys Condens Matter; 2011 May; 23(20):205804. PubMed ID: 21540495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solitary Oxygen Dopant Emission from Carbon Nanotubes Modified by Dielectric Metasurfaces.
    Ma X; James AR; Hartmann NF; Baldwin JK; Dominguez J; Sinclair MB; Luk TS; Wolf O; Liu S; Doorn SK; Htoon H; Brener I
    ACS Nano; 2017 Jun; 11(6):6431-6439. PubMed ID: 28535349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization.
    Badada BH; Shi T; Jackson HE; Smith LM; Zheng C; Etheridge J; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2015 Dec; 15(12):7847-52. PubMed ID: 26562619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The quantum confined Stark effect in silicon nanocrystals.
    Kulakci M; Serincan U; Turan R; Finstad TG
    Nanotechnology; 2008 Nov; 19(45):455403. PubMed ID: 21832777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects.
    Li MK; Riaz A; Wederhake M; Fink K; Saha A; Dehm S; He X; Schöppler F; Kappes MM; Htoon H; Popov VN; Doorn SK; Hertel T; Hennrich F; Krupke R
    ACS Nano; 2022 Aug; 16(8):11742-11754. PubMed ID: 35732039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Length-dependent optical effects in single walled carbon nanotubes.
    Rajan A; Strano MS; Heller DA; Hertel T; Schulten K
    J Phys Chem B; 2008 May; 112(19):6211-3. PubMed ID: 18327930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.
    Hofmann MS; Noé J; Kneer A; Crochet JJ; Högele A
    Nano Lett; 2016 May; 16(5):2958-62. PubMed ID: 27105355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-exciton emission from solitary dopant states of carbon nanotubes.
    Ma X; Hartmann NF; Velizhanin KA; Baldwin JKS; Adamska L; Tretiak S; Doorn SK; Htoon H
    Nanoscale; 2017 Nov; 9(42):16143-16148. PubMed ID: 29053165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of spectral diffusion and phonon-broadening in individual photo-emitters: the case of carbon nanotubes.
    Jeantet A; Chassagneux Y; Claude T; Lauret JS; Voisin C
    Nanoscale; 2018 Jan; 10(2):683-689. PubMed ID: 29242889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes.
    Cambré S; Santos SM; Wenseleers W; Nugraha AR; Saito R; Cognet L; Lounis B
    ACS Nano; 2012 Mar; 6(3):2649-55. PubMed ID: 22314108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exciton diffusion in air-suspended single-walled carbon nanotubes.
    Moritsubo S; Murai T; Shimada T; Murakami Y; Chiashi S; Maruyama S; Kato YK
    Phys Rev Lett; 2010 Jun; 104(24):247402. PubMed ID: 20867335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles.
    Htoon H; O'Connell MJ; Cox PJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2004 Jul; 93(2):027401. PubMed ID: 15323949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternation of band gap and localization of excitons in InGaNAs nanostructures with low nitrogen content.
    Gholami M; Haratizadeh H; Esmaeili M; Amiri R; Holtz PO; Hammar M
    Nanotechnology; 2008 Aug; 19(31):315705. PubMed ID: 21828797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes.
    Zakharko Y; Graf A; Zaumseil J
    Nano Lett; 2016 Oct; 16(10):6504-6510. PubMed ID: 27661764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoluminescence of single-walled carbon nanotubes: the role of Stokes shift and impurity levels.
    Mu J; Ma Y; Yin H; Liu C; Rohlfing M
    Phys Rev Lett; 2013 Sep; 111(13):137401. PubMed ID: 24116815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.