These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25251418)

  • 41. One-pot conversions of lignocellulosic and algal biomass into liquid fuels.
    De S; Dutta S; Saha B
    ChemSusChem; 2012 Sep; 5(9):1826-33. PubMed ID: 22639414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.
    Taylor MJ; Jiang L; Reichert J; Papageorgiou AC; Beaumont SK; Wilson K; Lee AF; Barth JV; Kyriakou G
    J Phys Chem C Nanomater Interfaces; 2017 Apr; 121(15):8490-8497. PubMed ID: 29225721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation.
    Mackus AJ; Weber MJ; Thissen NF; Garcia-Alonso D; Vervuurt RH; Assali S; Bol AA; Verheijen MA; Kessels WM
    Nanotechnology; 2016 Jan; 27(3):034001. PubMed ID: 26636744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.
    Karinen R; Vilonen K; Niemelä M
    ChemSusChem; 2011 Aug; 4(8):1002-16. PubMed ID: 21728248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition.
    Cao K; Zhu Q; Shan B; Chen R
    Sci Rep; 2015 Feb; 5():8470. PubMed ID: 25683469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling atomic layer deposition overcoating formation on a porous heterogeneous catalyst.
    Heikkinen N; Lehtonen J; Keskiväli L; Yim J; Shetty S; Ge Y; Reinikainen M; Putkonen M
    Phys Chem Chem Phys; 2022 Aug; 24(34):20506-20516. PubMed ID: 35993759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO
    Zhu Z; Yang L; Ke C; Fan G; Yang L; Li F
    Dalton Trans; 2021 Feb; 50(7):2616-2626. PubMed ID: 33522543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade.
    Xu X; Li Y; Gong Y; Zhang P; Li H; Wang Y
    J Am Chem Soc; 2012 Oct; 134(41):16987-90. PubMed ID: 23030399
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selectivity as a function of nanoparticle size in the catalytic hydrogenation of unsaturated alcohols.
    Bhattacharjee S; Dotzauer DM; Bruening ML
    J Am Chem Soc; 2009 Mar; 131(10):3601-10. PubMed ID: 19231847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding Pore Formation in ALD Alumina Overcoats.
    George C; Littlewood P; Stair PC
    ACS Appl Mater Interfaces; 2020 May; 12(18):20331-20343. PubMed ID: 32292027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran.
    Saha B; Bohn CM; Abu-Omar MM
    ChemSusChem; 2014 Nov; 7(11):3095-101. PubMed ID: 25187223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecule Saturation Boosts Acetylene Semihydrogenation Activity and Selectivity on a Core-Shell Ruthenium@Palladium Catalyst.
    Zhu C; Xu W; Liu F; Luo J; Lu J; Li WX
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202300110. PubMed ID: 37026370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Renewable Cyclopentanol From Catalytic Hydrogenation-Rearrangement of Biomass Furfural Over Ruthenium-Molybdenum Bimetallic Catalysts.
    Meng S; Weng Y; Wang X; Yin H; Wang Z; Sun Q; Fan M; Zhang Y
    Front Bioeng Biotechnol; 2020; 8():615235. PubMed ID: 33392177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts.
    Antunes MM; Silva AF; Bernardino CD; Fernandes A; Ribeiro F; Valente AA
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nano/subnanometer Pd nanoparticles on oxide supports synthesized by AB-type and low-temperature ABC-type atomic layer deposition: growth and morphology.
    Lu J; Stair PC
    Langmuir; 2010 Nov; 26(21):16486-95. PubMed ID: 20550163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Palladium supported on chitosan as a recyclable and selective catalyst for the synthesis of 2-phenyl ethanol.
    Dabbawala AA; Sudheesh N; Bajaj HC
    Dalton Trans; 2012 Mar; 41(10):2910-7. PubMed ID: 22261791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Doping Pd/SiO
    Long Y; Wang Y; Wu H; Xue T; Wu P; Guan Y
    RSC Adv; 2019 Aug; 9(44):25345-25350. PubMed ID: 35530090
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts.
    Date NS; Kondawar SE; Chikate RC; Rode CV
    ACS Omega; 2018 Aug; 3(8):9860-9871. PubMed ID: 31459114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.