These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25251495)

  • 1. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.
    Fraga H; Malheiro AC; Moutinho-Pereira J; Cardoso RM; Soares PM; Cancela JJ; Pinto JG; Santos JA
    PLoS One; 2014; 9(9):e108078. PubMed ID: 25251495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.
    Cheng G; He YN; Yue TX; Wang J; Zhang ZW
    Molecules; 2014 Sep; 19(9):13683-703. PubMed ID: 25185071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Under-Vine Vegetation Mitigates the Impacts of Excessive Precipitation in Vineyards.
    Vanden Heuvel J; Centinari M
    Front Plant Sci; 2021; 12():713135. PubMed ID: 34381488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of Tempranillo grape composition in the Rioja DOCa (Spain) related to soil and climatic characteristics.
    Ramos MC; Martínez de Toda F
    J Sci Food Agric; 2019 Feb; 99(3):1153-1165. PubMed ID: 30054923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthocyanin composition of grapes from three different soil types in cv. Tempranillo A.O.C. Rioja vineyards.
    Pérez-Álvarez EP; Martínez-Vidaurre JM; Garde-Cerdán T
    J Sci Food Agric; 2019 Aug; 99(10):4833-4841. PubMed ID: 30977148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of Macronutrients, Micronutrients, and Toxic Elements from Soil to Grapes to White Wines in Uncontaminated Vineyards.
    Richardson JB; Chase JK
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards.
    Mackenzie DE; Christy AG
    Water Sci Technol; 2005; 51(1):27-37. PubMed ID: 15771096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canopy management in rainfed vineyards (cv. Tempranillo) for optimising water use and enhancing wine quality.
    Pascual M; Romero MP; Rufat J; Villar JM
    J Sci Food Agric; 2015 Dec; 95(15):3067-76. PubMed ID: 26174077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO
    Arrizabalaga-Arriazu M; Morales F; Irigoyen JJ; Hilbert G; Pascual I
    J Plant Physiol; 2020 Sep; 252():153226. PubMed ID: 32763650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil management affects carbon and nitrogen concentrations and stable isotope ratios in vine products.
    Spangenberg JE; Zufferey V
    Sci Total Environ; 2023 May; 873():162410. PubMed ID: 36842594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures.
    Leibar U; Pascual I; Morales F; Aizpurua A; Unamunzaga O
    J Sci Food Agric; 2017 Jun; 97(8):2633-2640. PubMed ID: 27748529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapidly changing climatic conditions for wine grape growing in the Okanagan Valley region of British Columbia, Canada.
    Rayne S; Forest K
    Sci Total Environ; 2016 Jun; 556():169-78. PubMed ID: 26971218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices.
    Moral FJ; Rebollo F; Paniagua LL; García A
    Int J Biometeorol; 2014 Dec; 58(10):2139-52. PubMed ID: 24659115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of GIS to support sustainable management of vineyards in Plovdiv, Bulgaria.
    Arnaudova Zh; Bileva T
    Commun Agric Appl Biol Sci; 2011; 76(3):355-61. PubMed ID: 22696947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracing the
    Braschi E; Marchionni S; Priori S; Casalini M; Tommasini S; Natarelli L; Buccianti A; Bucelli P; Costantini EAC; Conticelli S
    Sci Total Environ; 2018 Jul; 628-629():1317-1327. PubMed ID: 30045553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The terroir of Port wine: Two hundred and sixty years of history.
    Prata-Sena M; Castro-Carvalho BM; Nunes S; Amaral B; Silva P
    Food Chem; 2018 Aug; 257():388-398. PubMed ID: 29622227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates.
    Hall A; Mathews AJ; Holzapfel BP
    Int J Biometeorol; 2016 Sep; 60(9):1405-22. PubMed ID: 26826103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climatic potential for summer and winter wine production.
    de Oliveira Aparecido LE; Moreto VB; de Souza Rolim G; da Silva Cabral de Moraes JR; Valeriano TTB; de Souza PS
    J Sci Food Agric; 2018 Mar; 98(4):1280-1290. PubMed ID: 28741681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements.
    Pepi S; Coletta A; Crupi P; Leis M; Russo S; Sansone L; Tassinari R; Chicca M; Vaccaro C
    Environ Monit Assess; 2016 Apr; 188(4):211. PubMed ID: 26951448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Port wine.
    Moreira N; Guedes de Pinho P
    Adv Food Nutr Res; 2011; 63():119-46. PubMed ID: 21867894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.