BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

825 related articles for article (PubMed ID: 25251591)

  • 1. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review.
    Nardone R; Höller Y; Brigo F; Orioli A; Tezzon F; Schwenker K; Christova M; Golaszewski S; Trinka E
    Brain Res; 2015 Sep; 1619():139-54. PubMed ID: 25251591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord injury affects I-wave facilitation in human motor cortex.
    Nardone R; Höller Y; Bathke AC; Orioli A; Schwenker K; Frey V; Golaszewski S; Brigo F; Trinka E
    Brain Res Bull; 2015 Jul; 116():93-7. PubMed ID: 26151771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.
    Petrosyan HA; Alessi V; Sisto SA; Kaufman M; Arvanian VL
    Neurosci Lett; 2017 Mar; 642():37-42. PubMed ID: 28159637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury.
    Tazoe T; Perez MA
    Arch Phys Med Rehabil; 2015 Apr; 96(4 Suppl):S145-55. PubMed ID: 25175159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial magnetic stimulation after spinal cord injury.
    Awad BI; Carmody MA; Zhang X; Lin VW; Steinmetz MP
    World Neurosurg; 2015 Feb; 83(2):232-5. PubMed ID: 23321378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in motor-evoked potential latency during grasping after tetraplegia.
    Jo HJ; Perez MA
    J Neurophysiol; 2019 Oct; 122(4):1675-1684. PubMed ID: 30673355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of corticospinal excitability after traumatic spinal cord injury using MEP recruitment curves: a preliminary TMS study.
    Nardone R; Höller Y; Thomschewski A; Bathke AC; Ellis AR; Golaszewski SM; Brigo F; Trinka E
    Spinal Cord; 2015 Jul; 53(7):534-8. PubMed ID: 25665538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury.
    Sangari S; Kirshblum S; Guest JD; Oudega M; Perez MA
    J Physiol; 2021 Oct; 599(19):4441-4454. PubMed ID: 34107068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury.
    Moreno-Duarte I; Morse LR; Alam M; Bikson M; Zafonte R; Fregni F
    Neuroimage; 2014 Jan; 85 Pt 3():1003-13. PubMed ID: 23727533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-interval intracortical inhibition with incomplete spinal cord injury.
    Roy FD; Zewdie ET; Gorassini MA
    Clin Neurophysiol; 2011 Jul; 122(7):1387-95. PubMed ID: 21295518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury.
    Sangari S; Perez MA
    J Neurosci; 2019 Oct; 39(40):7872-7881. PubMed ID: 31413076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of single-session repetitive transcranial magnetic stimulation applied over the hand versus leg motor area on pain after spinal cord injury.
    Jetté F; Côté I; Meziane HB; Mercier C
    Neurorehabil Neural Repair; 2013 Sep; 27(7):636-43. PubMed ID: 23579183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired Organization of Paired-Pulse TMS-Induced I-Waves After Human Spinal Cord Injury.
    Cirillo J; Calabro FJ; Perez MA
    Cereb Cortex; 2016 May; 26(5):2167-77. PubMed ID: 25814508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue-induced motor cortex excitability changes in subjects with spinal cord injury.
    Nardone R; Höller Y; Brigo F; Höller P; Christova M; Tezzon F; Golaszewski S; Trinka E
    Brain Res Bull; 2013 Oct; 99():9-12. PubMed ID: 24045114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of corticospinal function in spinal cord injury using transcranial motor cortex stimulation: a review.
    McKay WB; Stokic DS; Dimitrijevic MR
    J Neurotrauma; 1997 Aug; 14(8):539-48. PubMed ID: 9300564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.