These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25251904)

  • 1. Engineering complementary hydrophobic interactions to control β-hairpin peptide self-assembly, network branching, and hydrogel properties.
    Sathaye S; Zhang H; Sonmez C; Schneider JP; MacDermaid CM; Von Bargen CD; Saven JG; Pochan DJ
    Biomacromolecules; 2014 Nov; 15(11):3891-900. PubMed ID: 25251904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism in self-assembly of peptide-based β-hairpin contributes to network morphology and hydrogel mechanical rigidity.
    Miller Y; Ma B; Nussinov R
    J Phys Chem B; 2015 Jan; 119(2):482-90. PubMed ID: 25545881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity for increased surface area in the hydrophobic core of β-sheet peptide bilayer nanoribbons.
    Jones CW; Morales CG; Eltiste SL; Yanchik-Slade FE; Lee NR; Nilsson BL
    J Pept Sci; 2021 Sep; 27(9):e3334. PubMed ID: 34151480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network.
    Nagy-Smith K; Moore E; Schneider J; Tycko R
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9816-21. PubMed ID: 26216960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast dynamics of semiflexible chain networks of self-assembled peptides.
    Branco MC; Nettesheim F; Pochan DJ; Schneider JP; Wagner NJ
    Biomacromolecules; 2009 Jun; 10(6):1374-80. PubMed ID: 19391585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence length determinants for self-assembly of amphipathic β-sheet peptides.
    Lee NR; Bowerman CJ; Nilsson BL
    Biopolymers; 2013 Nov; 100(6):738-50. PubMed ID: 23553562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey.
    Nagy-Smith K; Beltramo PJ; Moore E; Tycko R; Furst EM; Schneider JP
    ACS Cent Sci; 2017 Jun; 3(6):586-597. PubMed ID: 28691070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.
    Rojas A; Liwo A; Browne D; Scheraga HA
    J Mol Biol; 2010 Dec; 404(3):537-52. PubMed ID: 20888834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-hairpin folding by a model amyloid peptide in solution and at an interface.
    Knecht V
    J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Observation of Early-Time Hydrogelation in beta-Hairpin Peptide Self-Assembly.
    Yucel T; Micklitsch CM; Schneider JP; Pochan DJ
    Macromolecules; 2008 Jul; 41(15):5763-5772. PubMed ID: 19169385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure change of β-hairpin induced by turn optimization: an enhanced sampling molecular dynamics simulation study.
    Shao Q; Yang L; Gao YQ
    J Chem Phys; 2011 Dec; 135(23):235104. PubMed ID: 22191904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.
    Ghosh A; Pithadia AS; Bhat J; Bera S; Midya A; Fierke CA; Ramamoorthy A; Bhunia A
    Biochemistry; 2015 Apr; 54(13):2249-2261. PubMed ID: 25785896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of aromatic side chains and template effects of the hydrophobic cavity of a self-assembled peptide nanoarchitecture for anisotropic growth of gold nanocrystals.
    Tomizaki KY; Kishioka K; Kobayashi H; Kobayashi A; Yamada N; Kataoka S; Imai T; Kasuno M
    Bioorg Med Chem; 2015 Nov; 23(22):7282-91. PubMed ID: 26521037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.