These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 25252045)
1. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin. Byrne M; Smith AM; West S; Collard M; Dubois P; Graba-landry A; Dworjanyn SA Environ Sci Technol; 2014 Nov; 48(21):12620-7. PubMed ID: 25252045 [TBL] [Abstract][Full Text] [Related]
2. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Dworjanyn SA; Byrne M Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29643209 [TBL] [Abstract][Full Text] [Related]
3. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Wolfe K; Dworjanyn SA; Byrne M Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847 [TBL] [Abstract][Full Text] [Related]
4. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879 [TBL] [Abstract][Full Text] [Related]
5. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957 [TBL] [Abstract][Full Text] [Related]
6. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification. Mos B; Byrne M; Dworjanyn SA Mar Environ Res; 2016 Feb; 113():39-48. PubMed ID: 26595392 [TBL] [Abstract][Full Text] [Related]
7. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification. Brothers CJ; Harianto J; McClintock JB; Byrne M Proc Biol Sci; 2016 Aug; 283(1837):. PubMed ID: 27559066 [TBL] [Abstract][Full Text] [Related]
8. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Byrne M; Ho M; Wong E; Soars NA; Selvakumaraswamy P; Shepard-Brennand H; Dworjanyn SA; Davis AR Proc Biol Sci; 2011 Aug; 278(1716):2376-83. PubMed ID: 21177689 [TBL] [Abstract][Full Text] [Related]
9. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. Carey N; Harianto J; Byrne M J Exp Biol; 2016 Apr; 219(Pt 8):1178-86. PubMed ID: 26896541 [TBL] [Abstract][Full Text] [Related]
10. Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate. Mos B; Dworjanyn SA; Mamo LT; Kelaher BP Sci Total Environ; 2019 Jan; 646():1349-1358. PubMed ID: 30235620 [TBL] [Abstract][Full Text] [Related]
11. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Byrne M; Ho M; Selvakumaraswamy P; Nguyen HD; Dworjanyn SA; Davis AR Proc Biol Sci; 2009 May; 276(1663):1883-8. PubMed ID: 19324767 [TBL] [Abstract][Full Text] [Related]
12. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Collard M; De Ridder C; David B; Dehairs F; Dubois P Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127 [TBL] [Abstract][Full Text] [Related]
13. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Gianguzza P; Visconti G; Gianguzza F; Vizzini S; Sarà G; Dupont S Mar Environ Res; 2014 Feb; 93():70-7. PubMed ID: 23962538 [TBL] [Abstract][Full Text] [Related]
14. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
15. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. Foo SA; Dworjanyn SA; Poore AG; Byrne M PLoS One; 2012; 7(8):e42497. PubMed ID: 22880005 [TBL] [Abstract][Full Text] [Related]
16. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. Ho MA; Price C; King CK; Virtue P; Byrne M Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149 [TBL] [Abstract][Full Text] [Related]
17. Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva. Mos B; Kaposi KL; Rose AL; Kelaher B; Dworjanyn SA Environ Pollut; 2017 Sep; 228():190-200. PubMed ID: 28535490 [TBL] [Abstract][Full Text] [Related]
18. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [TBL] [Abstract][Full Text] [Related]
19. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Kamya PZ; Dworjanyn SA; Hardy N; Mos B; Uthicke S; Byrne M Glob Chang Biol; 2014 Nov; 20(11):3365-76. PubMed ID: 24615941 [TBL] [Abstract][Full Text] [Related]
20. Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes. Zhang T; Li X; Cao R; Zhang Q; Qu Y; Wang Q; Dong Z; Zhao J Sci Total Environ; 2022 Jun; 824():153780. PubMed ID: 35176363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]