BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25252122)

  • 1. Advancing into water's "no man's land": two liquid states?
    Paschek D; Ludwig R
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11699-701. PubMed ID: 25252122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective: Crossing the Widom line in no man's land: Experiments, simulations, and the location of the liquid-liquid critical point in supercooled water.
    Hestand NJ; Skinner JL
    J Chem Phys; 2018 Oct; 149(14):140901. PubMed ID: 30316289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.
    Xu Y; Petrik NG; Smith RS; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14921-14925. PubMed ID: 27956609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land.
    Handle PH; Loerting T; Sciortino F
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13336-13344. PubMed ID: 29133419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastable liquid-liquid transition in a molecular model of water.
    Palmer JC; Martelli F; Liu Y; Car R; Panagiotopoulos AZ; Debenedetti PG
    Nature; 2014 Jun; 510(7505):385-8. PubMed ID: 24943954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice crystallization in water's "no-man's land".
    Moore EB; Molinero V
    J Chem Phys; 2010 Jun; 132(24):244504. PubMed ID: 20590203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The puzzling first-order phase transition in water-glycerol mixtures.
    Popov I; Greenbaum Gutina A; Sokolov AP; Feldman Y
    Phys Chem Chem Phys; 2015 Jul; 17(27):18063-71. PubMed ID: 26100246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connection between liquid and non-crystalline solid phases in water.
    Martelli F; Leoni F; Sciortino F; Russo J
    J Chem Phys; 2020 Sep; 153(10):104503. PubMed ID: 32933306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water polyamorphism: reversibility and (dis)continuity.
    Winkel K; Elsaesser MS; Mayer E; Loerting T
    J Chem Phys; 2008 Jan; 128(4):044510. PubMed ID: 18247972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model.
    Gartner TE; Hunter KM; Lambros E; Caruso A; Riera M; Medders GR; Panagiotopoulos AZ; Debenedetti PG; Paesani F
    J Phys Chem Lett; 2022 Apr; 13(16):3652-3658. PubMed ID: 35436129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of property extrema in supercooled and stretched water models and a new correlation for predicting the stability limit of the liquid state.
    Uralcan B; Latinwo F; Debenedetti PG; Anisimov MA
    J Chem Phys; 2019 Feb; 150(6):064503. PubMed ID: 30769971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water's second glass transition.
    Amann-Winkel K; Gainaru C; Handle PH; Seidl M; Nelson H; Böhmer R; Loerting T
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17720-5. PubMed ID: 24101518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural relaxation and crystallization in supercooled water from 170 to 260 K.
    Kringle L; Thornley WA; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water's two-critical-point scenario in the Ising paradigm.
    Cerdeiriña CA; Troncoso J; González-Salgado D; Debenedetti PG; Stanley HE
    J Chem Phys; 2019 Jun; 150(24):244509. PubMed ID: 31255058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition.
    Bachler J; Giebelmann J; Amann-Winkel K; Loerting T
    J Chem Phys; 2022 Aug; 157(6):064502. PubMed ID: 35963736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anomalies and criticality of liquid water.
    Shi R; Tanaka H
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26591-26599. PubMed ID: 33060296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glass transition and relaxation behavior of bulk water and a possible relation to confined water.
    Swenson J; Teixeira J
    J Chem Phys; 2010 Jan; 132(1):014508. PubMed ID: 20078173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles.
    Smallenburg F; Filion L; Sciortino F
    Nat Phys; 2014 Sep; 10(9):653-657. PubMed ID: 25264453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The length and time scales of water's glass transitions.
    Limmer DT
    J Chem Phys; 2014 Jun; 140(21):214509. PubMed ID: 24908028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IR spectra of water droplets in no man's land and the location of the liquid-liquid critical point.
    Ni Y; Skinner JL
    J Chem Phys; 2016 Sep; 145(12):124509. PubMed ID: 27782639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.