These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25252169)

  • 21. Distribution of grip force in three different functional prehension patterns.
    Pylatiuk C; Kargov A; Schulz S; Döderlein L
    J Med Eng Technol; 2006; 30(3):176-82. PubMed ID: 16772221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perturbation-evoked electrodermal responses are sensitive to stimulus and context-dependent manipulations of task challenge.
    Sibley KM; Lakhani B; Mochizuki G; McIlroy WE
    Neurosci Lett; 2010 Nov; 485(3):217-21. PubMed ID: 20849928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of hand grip pressure distribution and EMG of finger flexor muscles under dynamic loads.
    Gurram R; Rakheja S; Gouw GJ
    Ergonomics; 1995 Apr; 38(4):684-99. PubMed ID: 7729396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of an electrodermal activity ring prototype as a research tool.
    Torniainen J; Cowley B; Henelius A; Lukander K; Pakarinen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6433-6. PubMed ID: 26737765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards a smart glove: arousal recognition based on textile Electrodermal Response.
    Valenza G; Lanata A; Scilingo EP; De Rossi D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3598-601. PubMed ID: 21096840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Handle grip span for optimising finger-specific force capability as a function of hand size.
    Lee SJ; Kong YK; Lowe BD; Song S
    Ergonomics; 2009 May; 52(5):601-8. PubMed ID: 19424925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes in grip force and dynamics of hand movement.
    Gilles MA; Wing AM
    J Mot Behav; 2003 Mar; 35(1):79-85. PubMed ID: 12724101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Relative Humidity on Electrodermal Levels and Responses.
    Bari DS; Aldosky HYY; Tronstad C; Kalvøy H; Martinsen ØG
    Skin Pharmacol Physiol; 2018; 31(6):298-307. PubMed ID: 30179872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calibrating Borg scale ratings of hand force exertion.
    Spielholz P
    Appl Ergon; 2006 Sep; 37(5):615-8. PubMed ID: 16356466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of total grip strength and individual finger forces on opposing (A-type) handles among Koreans.
    Kong YK; Seo MT; Kang HS
    Ergonomics; 2014; 57(1):108-15. PubMed ID: 24192400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Grip force coordination during bimanual tasks in unilateral cerebral palsy.
    Islam M; Gordon AM; Sköld A; Forssberg H; Eliasson AC
    Dev Med Child Neurol; 2011 Oct; 53(10):920-6. PubMed ID: 21896003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study on electrode gels for skin conductance measurements.
    Tronstad C; Johnsen GK; Grimnes S; Martinsen ØG
    Physiol Meas; 2010 Oct; 31(10):1395-410. PubMed ID: 20811086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of central set on anticipatory and triggered grip-force adjustments.
    Winstein CJ; Horak FB; Fisher BE
    Exp Brain Res; 2000 Feb; 130(3):298-308. PubMed ID: 10706429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A procedure for the measurement of infant skin conductance and its initial validation using clap induced startle.
    Ham J; Tronick E
    Dev Psychobiol; 2008 Sep; 50(6):626-31. PubMed ID: 18683186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of digital anesthesia on force control using a precision grip.
    Monzée J; Lamarre Y; Smith AM
    J Neurophysiol; 2003 Feb; 89(2):672-83. PubMed ID: 12574445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain activity is similar during precision and power gripping with light force: an fMRI study.
    Kuhtz-Buschbeck JP; Gilster R; Wolff S; Ulmer S; Siebner H; Jansen O
    Neuroimage; 2008 May; 40(4):1469-81. PubMed ID: 18316207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can internal models of objects be utilized for different prehension tasks?
    Quaney BM; Nudo RJ; Cole KJ
    J Neurophysiol; 2005 Apr; 93(4):2021-7. PubMed ID: 15590734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous recordings of skin conductance change during sleep.
    Shiihara Y; Umezawa A; Sakai Y; Kamitamari N; Kodama M
    Psychiatry Clin Neurosci; 2000 Jun; 54(3):268-9. PubMed ID: 11186071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection.
    Casilari E; Santoyo-Ramón JA; Cano-García JM
    PLoS One; 2016; 11(12):e0168069. PubMed ID: 27930736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iCalm: wearable sensor and network architecture for wirelessly communicating and logging autonomic activity.
    Fletcher RR; Dobson K; Goodwin MS; Eydgahi H; Wilder-Smith O; Fernholz D; Kuboyama Y; Hedman EB; Poh MZ; Picard RW
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):215-23. PubMed ID: 20064760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.