BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 2525260)

  • 1. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model.
    Henderson BW; Fingar VH
    Photochem Photobiol; 1989 Mar; 49(3):299-304. PubMed ID: 2525260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic therapy creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen.
    Busch TM; Wileyto EP; Emanuele MJ; Del Piero F; Marconato L; Glatstein E; Koch CJ
    Cancer Res; 2002 Dec; 62(24):7273-9. PubMed ID: 12499269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and initial characterization of mouse tumor cells resistant to porphyrin-mediated photodynamic therapy.
    Luna MC; Gomer CJ
    Cancer Res; 1991 Aug; 51(16):4243-9. PubMed ID: 1831066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo resistance to photofrin-mediated photodynamic therapy in radiation-induced fibrosarcoma cells resistant to in vitro Photofrin-mediated photodynamic therapy.
    Adams K; Rainbow AJ; Wilson BC; Singh G
    J Photochem Photobiol B; 1999 Apr; 49(2-3):136-41. PubMed ID: 10392463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor.
    Henderson BW; Fingar VH
    Cancer Res; 1987 Jun; 47(12):3110-4. PubMed ID: 3581062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparison of Dose Metrics to Predict Local Tumor Control for Photofrin-mediated Photodynamic Therapy.
    Qiu H; Kim MM; Penjweini R; Finlay JC; Busch TM; Wang T; Guo W; Cengel KA; Simone CB; Glatstein E; Zhu TC
    Photochem Photobiol; 2017 Jul; 93(4):1115-1122. PubMed ID: 28083883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF-1 tumors in C3H mice.
    Anderson CY; Freye K; Tubesing KA; Li YS; Kenney ME; Mukhtar H; Elmets CA
    Photochem Photobiol; 1998 Mar; 67(3):332-6. PubMed ID: 9523532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluence rate-dependent intratumor heterogeneity in physiologic and cytotoxic responses to Photofrin photodynamic therapy.
    Busch TM; Xing X; Yu G; Yodh A; Wileyto EP; Wang HW; Durduran T; Zhu TC; Wang KK
    Photochem Photobiol Sci; 2009 Dec; 8(12):1683-93. PubMed ID: 20024165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of in vivo photosensitizer fluorescence and photodynamic-therapy-induced depth of necrosis in a murine tumor model.
    Cheung R; Solonenko M; Busch TM; Del Piero F; Putt ME; Hahn SM; Yodh AG
    J Biomed Opt; 2003 Apr; 8(2):248-52. PubMed ID: 12683850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermic potentiation of photodynamic therapy employing Photofrin I and II: comparison of results using three animal tumor models.
    Waldow SM; Henderson BW; Dougherty TJ
    Lasers Surg Med; 1987; 7(1):12-22. PubMed ID: 2952850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy.
    Sitnik TM; Henderson BW
    Photochem Photobiol; 1998 Apr; 67(4):462-6. PubMed ID: 9559590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumors.
    Henderson BW; Sumlin AB; Owczarczak BL; Dougherty TJ
    J Photochem Photobiol B; 1991 Sep; 10(4):303-13. PubMed ID: 1791487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ].
    Busch TM; Hahn SM; Evans SM; Koch CJ
    Cancer Res; 2000 May; 60(10):2636-42. PubMed ID: 10825135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome.
    Wang HW; Putt ME; Emanuele MJ; Shin DB; Glatstein E; Yodh AG; Busch TM
    Cancer Res; 2004 Oct; 64(20):7553-61. PubMed ID: 15492282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosensitization of murine tumor, vasculature and skin by 5-aminolevulinic acid-induced porphyrin.
    Henderson BW; Vaughan L; Bellnier DA; van Leengoed H; Johnson PG; Oseroff AR
    Photochem Photobiol; 1995 Oct; 62(4):780-9. PubMed ID: 7480155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes.
    Fingar VH; Potter WR; Henderson BW
    Photochem Photobiol; 1987 May; 45(5):643-50. PubMed ID: 2955431
    [No Abstract]   [Full Text] [Related]  

  • 17.
    Penjweini R; Kim MM; Ong YH; Zhu TC
    Phys Med Biol; 2020 Jan; 65(3):03LT01. PubMed ID: 31751964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of photodynamic therapy on a retinoblastoma-like tumour. An experimental in vitro and in vivo study on the potential use of photodynamic therapy in the treatment of retinoblastoma.
    Winther JB
    Acta Ophthalmol Suppl (1985); 1990; (197):1-37. PubMed ID: 2176429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the in vivo and in vitro photosensitizing capabilities of uroporphyrin I compared to photofrin II.
    Nelson JS; Sun CH; Berns MW
    Lasers Surg Med; 1986; 6(2):131-6. PubMed ID: 2941630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.
    Liu YH; Hawk RM; Ramaprasad S
    Magn Reson Imaging; 1995; 13(2):251-8. PubMed ID: 7739367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.