BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 25252604)

  • 1. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals.
    McVey BF; Tilley RD
    Acc Chem Res; 2014 Oct; 47(10):3045-51. PubMed ID: 25252604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution Synthesis, Surface Passivation, Optical Properties, Biomedical Applications, and Cytotoxicity of Silicon and Germanium Nanocrystals.
    McVey BFP; Prabakar S; Gooding JJ; Tilley RD
    Chempluschem; 2017 Jan; 82(1):60-73. PubMed ID: 31961504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical absorption and emission of nitrogen-doped silicon nanocrystals.
    Pi X; Chen X; Ma Y; Yang D
    Nanoscale; 2011 Nov; 3(11):4584-8. PubMed ID: 21989790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals.
    Jariwala BN; Dewey OS; Stradins P; Ciobanu CV; Agarwal S
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3033-41. PubMed ID: 21774486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution Synthesis and Optical Properties of Transition-Metal-Doped Silicon Nanocrystals.
    McVey BF; Butkus J; Halpert JE; Hodgkiss JM; Tilley RD
    J Phys Chem Lett; 2015 May; 6(9):1573-6. PubMed ID: 26263316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition.
    Gresback R; Murakami Y; Ding Y; Yamada R; Okazaki K; Nozaki T
    Langmuir; 2013 Feb; 29(6):1802-7. PubMed ID: 23320484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.
    Ghosh R; Giri PK; Imakita K; Fujii M
    Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, optical properties and theoretical modelling of discrete emitting states in doped silicon nanocrystals for bioimaging.
    McVey BFP; König D; Cheng X; O'Mara PB; Seal P; Tan X; Tahini HA; Smith SC; Gooding JJ; Tilley RD
    Nanoscale; 2018 Aug; 10(33):15600-15607. PubMed ID: 30090899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-engineered silicon nanocrystals.
    Mariotti D; Mitra S; Svrček V
    Nanoscale; 2013 Feb; 5(4):1385-98. PubMed ID: 23334154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals.
    Erogbogbo F; Yong KT; Roy I; Hu R; Law WC; Zhao W; Ding H; Wu F; Kumar R; Swihart MT; Prasad PN
    ACS Nano; 2011 Jan; 5(1):413-23. PubMed ID: 21138323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications.
    Dasog M; Kehrle J; Rieger B; Veinot JG
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2322-39. PubMed ID: 26607409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
    Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y
    Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals.
    Dasog M; Yang Z; Regli S; Atkins TM; Faramus A; Singh MP; Muthuswamy E; Kauzlarich SM; Tilley RD; Veinot JG
    ACS Nano; 2013 Mar; 7(3):2676-85. PubMed ID: 23394574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.
    Liu CY; Kortshagen UR
    Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance.
    Pi X; Delerue C
    Phys Rev Lett; 2013 Oct; 111(17):177402. PubMed ID: 24206519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping.
    Fujii M; Sugimoto H; Imakita K
    Nanotechnology; 2016 Jul; 27(26):262001. PubMed ID: 27189818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size controlled synthesis of silicon nanocrystals using cationic surfactant templates.
    Linehan K; Doyle H
    Small; 2014 Feb; 10(3):584-90. PubMed ID: 24027115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface morphology dependent photoluminescence from colloidal silicon nanocrystals.
    Warner JH; Rubinsztein-Dunlop H; Tilley RD
    J Phys Chem B; 2005 Oct; 109(41):19064-7. PubMed ID: 16853458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile phosphine-free method for synthesizing PbSe nanocrystals with strong optical limiting effects.
    Wang TM; Gao B; Wang Q; Zhao M; Kang KB; Xu ZG; Zhang HL
    Chem Asian J; 2013 May; 8(5):912-8. PubMed ID: 23447458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.