These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25252781)

  • 1. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
    Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T
    Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INTERSNP: genome-wide interaction analysis guided by a priori information.
    Herold C; Steffens M; Brockschmidt FF; Baur MP; Becker T
    Bioinformatics; 2009 Dec; 25(24):3275-81. PubMed ID: 19837719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.
    Van der Sluis S; Dolan CV; Li J; Song Y; Sham P; Posthuma D; Li MX
    Bioinformatics; 2015 Apr; 31(7):1007-15. PubMed ID: 25431328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haplotype synthesis analysis reveals functional variants underlying known genome-wide associated susceptibility loci.
    Lacour A; Ellinghaus D; Schreiber S; Franke A; Becker T
    Bioinformatics; 2016 Jul; 32(14):2136-42. PubMed ID: 27153721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data.
    Guo B; Wu B
    Bioinformatics; 2019 Apr; 35(8):1366-1372. PubMed ID: 30239606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants.
    Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA
    Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel random effect model for GWAS meta-analysis and its application to trans-ethnic meta-analysis.
    Shi J; Lee S
    Biometrics; 2016 Sep; 72(3):945-54. PubMed ID: 26916671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quick, "imputation-free" meta-analysis with proxy-SNPs.
    Meesters C; Leber M; Herold C; Angisch M; Mattheisen M; Drichel D; Lacour A; Becker T
    BMC Bioinformatics; 2012 Sep; 13():231. PubMed ID: 22971100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TS: a powerful truncated test to detect novel disease associated genes using publicly available gWAS summary data.
    Zhang J; Guo X; Gonzales S; Yang J; Wang X
    BMC Bioinformatics; 2020 May; 21(1):172. PubMed ID: 32366212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWAS with longitudinal phenotypes: performance of approximate procedures.
    Sikorska K; Montazeri NM; Uitterlinden A; Rivadeneira F; Eilers PH; Lesaffre E
    Eur J Hum Genet; 2015 Oct; 23(10):1384-91. PubMed ID: 25712081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis.
    Ueki M; Tamiya G
    BMC Bioinformatics; 2012 May; 13():72. PubMed ID: 22554139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powerful statistical method to detect disease-associated genes using publicly available genome-wide association studies summary data.
    Zhang J; Zhao Z; Guo X; Guo B; Wu B
    Genet Epidemiol; 2019 Dec; 43(8):941-951. PubMed ID: 31392781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analysis of SNP-environment interaction with heterogeneity for overlapping data.
    Jin Q; Shi G
    Sci Rep; 2021 Jan; 11(1):2590. PubMed ID: 33510406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GWAR: robust analysis and meta-analysis of genome-wide association studies.
    Dimou NL; Tsirigos KD; Elofsson A; Bagos PG
    Bioinformatics; 2017 May; 33(10):1521-1527. PubMed ID: 28108451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-analysis and meta-analysis of summary statistics from gene-environment interaction studies.
    Pham DT; Westerman KE; Pan C; Chen L; Srinivasan S; Isganaitis E; Vajravelu ME; Bacha F; Chernausek S; Gubitosi-Klug R; Divers J; Pihoker C; Marcovina SM; Manning AK; Chen H
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38039147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unifying framework for joint trait analysis under a non-infinitesimal model.
    Johnson R; Shi H; Pasaniuc B; Sankararaman S
    Bioinformatics; 2018 Jul; 34(13):i195-i201. PubMed ID: 29949958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations.
    Yang J; Lee SH; Goddard ME; Visscher PM
    Methods Mol Biol; 2013; 1019():215-36. PubMed ID: 23756893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature.
    Bagos PG
    BMC Genet; 2011 Jan; 12():8. PubMed ID: 21247440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using imputed genotype data in the joint score tests for genetic association and gene-environment interactions in case-control studies.
    Song M; Wheeler W; Caporaso NE; Landi MT; Chatterjee N
    Genet Epidemiol; 2018 Mar; 42(2):146-155. PubMed ID: 29178451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.