BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25252785)

  • 1. CASPER: context-aware scheme for paired-end reads from high-throughput amplicon sequencing.
    Kwon S; Lee B; Yoon S
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25252785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MeFiT: merging and filtering tool for illumina paired-end reads for 16S rRNA amplicon sequencing.
    Parikh HI; Koparde VN; Bradley SP; Buck GA; Sheth NU
    BMC Bioinformatics; 2016 Dec; 17(1):491. PubMed ID: 27905885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors.
    Gaspar JM
    BMC Bioinformatics; 2018 Dec; 19(1):536. PubMed ID: 30572828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
    Zhang J; Kobert K; Flouri T; Stamatakis A
    Bioinformatics; 2014 Mar; 30(5):614-20. PubMed ID: 24142950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BBMerge - Accurate paired shotgun read merging via overlap.
    Bushnell B; Rood J; Singer E
    PLoS One; 2017; 12(10):e0185056. PubMed ID: 29073143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAREx: context-aware read extension of paired-end sequencing data.
    Kallenborn F; Schmidt B
    BMC Bioinformatics; 2024 May; 25(1):186. PubMed ID: 38730374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits of merging paired-end reads before pre-processing environmental metagenomics data.
    Maran MIJ; Davis G DJ
    Mar Genomics; 2022 Feb; 61():100914. PubMed ID: 34864203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approximate Bayesian approach for mapping paired-end DNA reads to a reference genome.
    Shrestha AM; Frith MC
    Bioinformatics; 2013 Apr; 29(8):965-72. PubMed ID: 23413433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. misFinder: identify mis-assemblies in an unbiased manner using reference and paired-end reads.
    Zhu X; Leung HC; Wang R; Chin FY; Yiu SM; Quan G; Li Y; Zhang R; Jiang Q; Liu B; Dong Y; Zhou G; Wang Y
    BMC Bioinformatics; 2015 Nov; 16():386. PubMed ID: 26573684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short and long range paired-end reads.
    Hernandez D; Tewhey R; Veyrieras JB; Farinelli L; Østerås M; François P; Schrenzel J
    Bioinformatics; 2014 Jan; 30(1):40-9. PubMed ID: 24130309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMperm: a fast and comprehensive IMmune Paired-End Reads Merger for sequencing data.
    Zhang W; Ju J; Zhou Y; Xiong T; Wang M; Li C; Lu S; Lu Z; Lin L; Liu X; Li SC
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NucBreak: location of structural errors in a genome assembly by using paired-end Illumina reads.
    Khelik K; Sandve GK; Nederbragt AJ; Rognes T
    BMC Bioinformatics; 2020 Feb; 21(1):66. PubMed ID: 32085722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads.
    Jiang H; Lei R; Ding SW; Zhu S
    BMC Bioinformatics; 2014 Jun; 15():182. PubMed ID: 24925680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads.
    Criscuolo A; Brisse S
    Genomics; 2013; 102(5-6):500-6. PubMed ID: 23912058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joining Illumina paired-end reads for classifying phylogenetic marker sequences.
    Liu T; Chen CY; Chen-Deng A; Chen YL; Wang JY; Hou YI; Lin MC
    BMC Bioinformatics; 2020 Mar; 21(1):105. PubMed ID: 32171248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fulcrum: condensing redundant reads from high-throughput sequencing studies.
    Burriesci MS; Lehnert EM; Pringle JR
    Bioinformatics; 2012 May; 28(10):1324-7. PubMed ID: 22419786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.