These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 25252795)
1. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795 [TBL] [Abstract][Full Text] [Related]
2. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
3. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. Guo T; Li Y; Cao G; Zhang Z; Chang S; Czajka-Jakubowska A; Nör JE; Clarkson BH; Liu J J Dent Res; 2014 Dec; 93(12):1290-5. PubMed ID: 25139361 [TBL] [Abstract][Full Text] [Related]
4. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite. López-González I; Zamora-Ledezma C; Sanchez-Lorencio MI; Tristante Barrenechea E; Gabaldón-Hernández JA; Meseguer-Olmo L Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681873 [TBL] [Abstract][Full Text] [Related]
5. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
6. Effect of expanded bone marrow-derived osteoprogenitor cells seeded into polycaprolactone/tricalcium phosphate scaffolds in new bone regeneration of rabbit mandibular defects. Nuntanaranont T; Promboot T; Sutapreyasri S J Mater Sci Mater Med; 2018 Feb; 29(3):24. PubMed ID: 29427037 [TBL] [Abstract][Full Text] [Related]
7. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759 [TBL] [Abstract][Full Text] [Related]
8. Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds. Guo T; Cao G; Li Y; Zhang Z; Nör JE; Clarkson BH; Liu J J Dent Res; 2018 Nov; 97(12):1331-1338. PubMed ID: 29995454 [TBL] [Abstract][Full Text] [Related]
9. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
10. Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone blend scaffold for bone tissue engineering applications. Remya KR; Joseph J; Mani S; John A; Varma HK; Ramesh P J Biomed Nanotechnol; 2013 Sep; 9(9):1483-94. PubMed ID: 23980497 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. Gu Y; Bai Y; Zhang D J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937 [TBL] [Abstract][Full Text] [Related]
13. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. Buyuksungur S; Hasirci V; Hasirci N J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241 [TBL] [Abstract][Full Text] [Related]
14. Enhanced osteogenic differentiation and mineralization of human dental pulp stem cells using Prunus amygdalus amara (bitter almond) incorporated nanofibrous scaffold. Valizadeh N; Salehi R; Aghazadeh M; Alipour M; Sadeghzadeh H; Mahkam M J Mech Behav Biomed Mater; 2023 Jun; 142():105790. PubMed ID: 37104899 [TBL] [Abstract][Full Text] [Related]
15. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Xia Y; Chen H; Zhang F; Wang L; Chen B; Reynolds MA; Ma J; Schneider A; Gu N; Xu HHK Artif Cells Nanomed Biotechnol; 2018; 46(sup1):423-433. PubMed ID: 29355052 [TBL] [Abstract][Full Text] [Related]
16. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
17. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. Flores-Cedillo ML; Alvarado-Estrada KN; Pozos-Guillén AJ; Murguía-Ibarra JS; Vidal MA; Cervantes-Uc JM; Rosales-Ibáñez R; Cauich-Rodríguez JV J Mater Sci Mater Med; 2016 Feb; 27(2):35. PubMed ID: 26704552 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
19. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Zheng L; Yang F; Shen H; Hu X; Mochizuki C; Sato M; Wang S; Zhang Y Biomaterials; 2011 Oct; 32(29):7053-9. PubMed ID: 21722953 [TBL] [Abstract][Full Text] [Related]