These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25252834)

  • 1. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking.
    Wang Y; Srinivasan M
    Biol Lett; 2014 Sep; 10(9):. PubMed ID: 25252834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations of pelvis state to foot placement do not imply within-step active control.
    Patil NS; Dingwell JB; Cusumano JP
    J Biomech; 2019 Dec; 97():109375. PubMed ID: 31668906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability.
    Perry JA; Srinivasan M
    R Soc Open Sci; 2017 Sep; 4(9):160627. PubMed ID: 28989728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive multi-objective control explains how humans make lateral maneuvers while walking.
    Desmet DM; Cusumano JP; Dingwell JB
    PLoS Comput Biol; 2022 Nov; 18(11):e1010035. PubMed ID: 36374914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.
    Balasubramanian CK; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):483-90. PubMed ID: 20193972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vestibular stimulation on gait stability when walking at different step widths.
    Magnani RM; van Dieën JH; Bruijn SM
    Exp Brain Res; 2023 Jan; 241(1):49-58. PubMed ID: 36346447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary mechanisms for upright balance during walking.
    Reimann H; Fettrow TD; Thompson ED; Agada P; McFadyen BJ; Jeka JJ
    PLoS One; 2017; 12(2):e0172215. PubMed ID: 28234936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of visual deprivation on stability among young and older adults during treadmill walking.
    Saucedo F; Yang F
    Gait Posture; 2017 May; 54():106-111. PubMed ID: 28284144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Evaluation of Virtual Reality-based Turning on a Self-Paced Linear Treadmill.
    Oh K; Stanley CJ; Damiano DL; Kim J; Yoon J; Park HS
    Gait Posture; 2018 Sep; 65():157-162. PubMed ID: 30510358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of external lateral stabilization on ankle moment control during steady-state walking.
    van Leeuwen AM; van Dieën JH; Bruijn SM
    J Biomech; 2022 Sep; 142():111259. PubMed ID: 36027635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of constraining mediolateral ankle moments and foot placement on the use of the counter-rotation mechanism during walking.
    van den Bogaart M; Bruijn SM; Spildooren J; van Dieën JH; Meyns P
    J Biomech; 2022 May; 136():111073. PubMed ID: 35390646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active foot placement control ensures stable gait: Effect of constraints on foot placement and ankle moments.
    van Leeuwen AM; van Dieën JH; Daffertshofer A; Bruijn SM
    PLoS One; 2020; 15(12):e0242215. PubMed ID: 33332421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humans use multi-objective control to regulate lateral foot placement when walking.
    Dingwell JB; Cusumano JP
    PLoS Comput Biol; 2019 Mar; 15(3):e1006850. PubMed ID: 30840620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuromechanical strategy for mediolateral foot placement in walking humans.
    Rankin BL; Buffo SK; Dean JC
    J Neurophysiol; 2014 Jul; 112(2):374-83. PubMed ID: 24790168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.