These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25252883)

  • 41. A biorobotic pectoral fin for autonomous undersea vehicles.
    Tangorra JL; Davidson SN; Madden PG; Lauder GV; Hunter IW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2726-9. PubMed ID: 17946977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences.
    Yun D; Kim KS; Kim S; Kyung J; Lee S
    Rev Sci Instrum; 2013 Mar; 84(3):036108. PubMed ID: 23556860
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-fast escape maneuver of an octopus-inspired robot.
    Weymouth GD; Subramaniam V; Triantafyllou MS
    Bioinspir Biomim; 2015 Feb; 10(1):016016. PubMed ID: 25643048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model.
    Clemente CJ; Richards C
    Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities.
    Fu C; Cao ZD; Fu SJ
    J Exp Biol; 2013 Aug; 216(Pt 16):3164-74. PubMed ID: 23661776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distributed flow sensing for closed-loop speed control of a flexible fish robot.
    Zhang F; Lagor FD; Yeo D; Washington P; Paley DA
    Bioinspir Biomim; 2015 Oct; 10(6):065001. PubMed ID: 26495855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.
    Calisti M; Corucci F; Arienti A; Laschi C
    Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance of synchronized fins in biomimetic propulsion.
    Shoele K; Zhu Q
    Bioinspir Biomim; 2015 Mar; 10(2):026008. PubMed ID: 25821945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of running with compliant curved legs.
    Jun JY; Clark JE
    Bioinspir Biomim; 2015 Jul; 10(4):046008. PubMed ID: 26151098
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Octopus-inspired multi-arm robotic swimming.
    Sfakiotakis M; Kazakidi A; Tsakiris DP
    Bioinspir Biomim; 2015 May; 10(3):035005. PubMed ID: 25970151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
    Shen Q; Wang T; Kim KJ
    Bioinspir Biomim; 2015 Sep; 10(5):055007. PubMed ID: 26414228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro).
    Villanueva AA; Marut KJ; Michael T; Priya S
    Bioinspir Biomim; 2013 Dec; 8(4):046005. PubMed ID: 24166747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle.
    Moslemi AA; Krueger PS
    Bioinspir Biomim; 2011 Jun; 6(2):026001. PubMed ID: 21364256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluid dynamics of the larval zebrafish pectoral fin and the role of fin bending in fluid transport.
    Green MH; Curet OM; Patankar NA; Hale ME
    Bioinspir Biomim; 2013 Mar; 8(1):016002. PubMed ID: 23220841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.