These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25252905)

  • 1. Biophysical activity of animal-derived exogenous surfactants mixed with rifampicin.
    Kolomaznik M; Calkovska A; Herting E; Stichtenoth G
    Adv Exp Med Biol; 2015; 839():31-9. PubMed ID: 25252905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration.
    Chen CM; Chang CH; Chao CH; Wang MH; Yeh TF
    Drug Deliv; 2019 Dec; 26(1):604-611. PubMed ID: 31204848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity.
    Rüdiger M; Tölle A; Meier W; Rüstow B
    Am J Physiol Lung Cell Mol Physiol; 2005 Feb; 288(2):L379-83. PubMed ID: 15501950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant inhibition by plasma proteins: differential sensitivity of various surfactant preparations.
    Seeger W; Grube C; Günther A; Schmidt R
    Eur Respir J; 1993 Jul; 6(7):971-7. PubMed ID: 8370446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants.
    Hall SB; Venkitaraman AR; Whitsett JA; Holm BA; Notter RH
    Am Rev Respir Dis; 1992 Jan; 145(1):24-30. PubMed ID: 1731593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biophysical models in investigations of exogenous surfactant activities on the surface tension and their theurapeutic effectiveness].
    Todorov R; Iordanova A; Georgiev GA; Petkova Kh; Stoimenova E; Georgieva R; Khristova E; Vasiliev Kh; Lalchev Z
    Akush Ginekol (Sofiia); 2007; 46 Suppl 1():29-36. PubMed ID: 18175392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of dynamic surface properties of therapeutic surfactants and lung phospholipids.
    Banerjee R; Puniyani RR; Bellare JR
    J Biomater Appl; 2000 Oct; 15(2):140-59. PubMed ID: 11081642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical and physiological properties of a modified porcine surfactant enriched with surfactant protein A.
    Sun B; Curstedt T; Lindgren G; Franzén B; Alaiya AA; Calkovská A; Robertson B
    Eur Respir J; 1997 Sep; 10(9):1967-74. PubMed ID: 9311487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercial versus native surfactants. Surface activity, molecular components, and the effect of calcium.
    Bernhard W; Mottaghian J; Gebert A; Rau GA; von Der HARDT H; Poets CF
    Am J Respir Crit Care Med; 2000 Oct; 162(4 Pt 1):1524-33. PubMed ID: 11029372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronan decreases surfactant inactivation in vitro.
    Lu KW; Goerke J; Clements JA; Taeusch HW
    Pediatr Res; 2005 Feb; 57(2):237-41. PubMed ID: 15585679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextran reduces surfactant inhibition by meconium.
    Tashiro K; Kobayashi T; Robertson B
    Acta Paediatr; 2000 Dec; 89(12):1439-45. PubMed ID: 11195233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interactions between nitrous oxide and exogenous pulmonary surfactant in vitro.
    Sosnowski TR; Gradoń L; Marraro GA
    Exp Lung Res; 2004 Jun; 30(4):311-8. PubMed ID: 15204836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of palmitic acid in pulmonary surfactant: enhancement of surface activity and prevention of inhibition by blood proteins.
    Cockshutt AM; Absolom DR; Possmayer F
    Biochim Biophys Acta; 1991 Sep; 1085(2):248-56. PubMed ID: 1892895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies on the biophysical activities of the low-molecular-weight hydrophobic proteins purified from bovine pulmonary surfactant.
    Yu SH; Possmayer F
    Biochim Biophys Acta; 1988 Aug; 961(3):337-50. PubMed ID: 3401500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mechanisms of lung surfactant inhibition.
    Holm BA; Wang Z; Notter RH
    Pediatr Res; 1999 Jul; 46(1):85-93. PubMed ID: 10400140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of in vitro surface properties of clove oil-phospholipid suspensions with those of ALEC, Exosurf and Survanta.
    Banerjee R; Bellare JR
    Pulm Pharmacol Ther; 2001; 14(2):85-91. PubMed ID: 11273788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acidosis on bilirubin-lipid extract surfactant interaction.
    Amato M; Schürch S; Bachofen H; Burri PH
    Biol Neonate; 1995; 68(5):301-7. PubMed ID: 8835084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of bilirubin on surface tension properties of lung surfactant.
    Amato M; Schürch S; Grunder R; Bachofen H; Burri PH
    Arch Dis Child Fetal Neonatal Ed; 1996 Nov; 75(3):F191-6. PubMed ID: 8976686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical Activity of Impaired Lung Surfactant upon Exposure to Polymer Nanoparticles.
    Beck-Broichsitter M
    Langmuir; 2016 Oct; 32(40):10422-10429. PubMed ID: 27641633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.