BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25253001)

  • 1. [Hemodynamic analyses of large intracranial aneurysms].
    Wu J; Liu A; Fu C; Zhao Y; Qian Z; Kang H; Peng T; Wu Z
    Zhonghua Yi Xue Za Zhi; 2014 Jul; 94(25):1921-4. PubMed ID: 25253001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs.
    Hippelheuser JE; Lauric A; Cohen AD; Malek AM
    J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics.
    Castro MA; Putman CM; Cebral JR
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1703-9. PubMed ID: 16971618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations.
    Berg P; Saalfeld S; Voß S; Redel T; Preim B; Janiga G; Beuing O
    J Neurointerv Surg; 2018 Mar; 10(3):290-296. PubMed ID: 28465404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic Effect of Flow Diverter and Coils in Treatment of Large and Giant Intracranial Aneurysms.
    Jing L; Zhong J; Liu J; Yang X; Paliwal N; Meng H; Wang S; Zhang Y
    World Neurosurg; 2016 May; 89():199-207. PubMed ID: 26852712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates.
    Karmonik C; Yen C; Grossman RG; Klucznik R; Benndorf G
    Acta Neurochir (Wien); 2009 May; 151(5):479-85; discussion 485. PubMed ID: 19343271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics.
    Jansen IG; Schneiders JJ; Potters WV; van Ooij P; van den Berg R; van Bavel E; Marquering HA; Majoie CB
    AJNR Am J Neuroradiol; 2014 Aug; 35(8):1543-8. PubMed ID: 24651816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angioarchitectures and Hemodynamic Characteristics of Posterior Communicating Artery Aneurysms and Their Association with Rupture Status.
    Chung BJ; Doddasomayajula R; Mut F; Detmer F; Pritz MB; Hamzei-Sichani F; Brinjikji W; Kallmes DF; Jimenez CM; Putman CM; Cebral JR
    AJNR Am J Neuroradiol; 2017 Nov; 38(11):2111-2118. PubMed ID: 28860212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of stents and flow diverters on hemodynamics in idealized aneurysm models.
    Seshadhri S; Janiga G; Beuing O; Skalej M; Thévenin D
    J Biomech Eng; 2011 Jul; 133(7):071005. PubMed ID: 21823744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Three-dimensional numerical simulation and hemodynamic analysis of intracranial longitypical aneurysms].
    Mu SQ; Yang XJ; Zhang Y; Luo B; Lü M; Wu ZX; Li HY; Wang SZ; Ding GH
    Zhonghua Yi Xue Za Zhi; 2009 Feb; 89(5):310-3. PubMed ID: 19563706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow dynamics in models of intracranial terminal aneurysms.
    Valencia A
    Mech Chem Biosyst; 2004 Sep; 1(3):221-31. PubMed ID: 16783935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New method for retrospective study of hemodynamic changes before and after aneurysm formation in patients with ruptured or unruptured aneurysms.
    Le WJ; Zhu YQ; Li MH; Yan L; Tan HQ; Xiao SM; Cheng YS
    BMC Neurol; 2013 Nov; 13():166. PubMed ID: 24195732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-aneurysmal hemodynamic alterations by a self-expandable intracranial stent and flow diversion stent: high intra-aneurysmal pressure remains regardless of flow velocity reduction.
    Shobayashi Y; Tateshima S; Kakizaki R; Sudo R; Tanishita K; Viñuela F
    J Neurointerv Surg; 2013 Nov; 5 Suppl 3():iii38-42. PubMed ID: 23048176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic changes in a middle cerebral artery aneurysm at follow-up times before and after its rupture: a case report and a review of the literature.
    Sejkorová A; Dennis KD; Švihlová H; Petr O; Lanzino G; Hejčl A; Dragomir-Daescu D
    Neurosurg Rev; 2017 Apr; 40(2):329-338. PubMed ID: 27882440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and Qualitative Comparison of 4D-DSA with 3D-DSA Using Computational Fluid Dynamics Simulations in Cerebral Aneurysms.
    Lang S; Hoelter P; Birkhold AI; Schmidt M; Endres J; Strother C; Doerfler A; Luecking H
    AJNR Am J Neuroradiol; 2019 Sep; 40(9):1505-1510. PubMed ID: 31467234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.