These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25253053)

  • 1. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review.
    Guezennec AG; Michel C; Bru K; Touze S; Desroche N; Mnif I; Motelica-Heino M
    Environ Sci Pollut Res Int; 2015 May; 22(9):6390-406. PubMed ID: 25253053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissemination of acrylamide monomer from polyacrylamide-based flocculant use--sand and gravel quarry case study.
    Touzé S; Guerin V; Guezennec AG; Binet S; Togola A
    Environ Sci Pollut Res Int; 2015 May; 22(9):6423-30. PubMed ID: 25182426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial aerobic and anaerobic degradation of acrylamide in sludge and water under environmental conditions--case study in a sand and gravel quarry.
    Guezennec AG; Michel C; Ozturk S; Togola A; Guzzo J; Desroche N
    Environ Sci Pollut Res Int; 2015 May; 22(9):6440-51. PubMed ID: 25369918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of residual monomer from polyacrylamide on head lettuce grown in peat substrate.
    Mroczek E; Kleiber T; Konieczny P; Waśkiewicz A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):2113-9. PubMed ID: 26414298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual starch-polyacrylamide polymer system for improved flocculation.
    Lapointe M; Barbeau B
    Water Res; 2017 Nov; 124():202-209. PubMed ID: 28759792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards sustainable management of polyacrylamide in soil-water environment: Occurrence, degradation, and risk.
    Cheng YC; Wang CP; Liu KY; Pan SY
    Sci Total Environ; 2024 May; 926():171587. PubMed ID: 38490421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.
    Junqua G; Spinelli S; Gonzalez C
    Environ Sci Pollut Res Int; 2015 May; 22(9):6452-60. PubMed ID: 24840357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide monomer leaching from polyacrylamide-treated irrigation furrows.
    Lentz RD; Andrawes FF; Barvenik FW; Koehn AC
    J Environ Qual; 2008; 37(6):2293-8. PubMed ID: 18948483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide release resulting from sunlight irradiation of aqueous polyacrylamide/iron mixtures.
    Woodrow JE; Seiber JN; Miller GC
    J Agric Food Chem; 2008 Apr; 56(8):2773-9. PubMed ID: 18351736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation and transfer of polyacrylamide based flocculent in sludge and industrial and natural waters.
    Guzzo J; Guezennec AG
    Environ Sci Pollut Res Int; 2015 May; 22(9):6387-9. PubMed ID: 25209540
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels.
    Mittal H; Jindal R; Kaith BS; Maity A; Ray SS
    Carbohydr Polym; 2014 Dec; 114():321-329. PubMed ID: 25263897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorptive removal of As(III) ions from water using spent grain modified by polyacrylamide.
    Chen Y; Xiong C
    J Environ Sci (China); 2016 Jul; 45():124-30. PubMed ID: 27372126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and microbial insights towards anaerobic biodegradation of anionic polyacrylamide in oil sands tailings.
    Li J; Usman M; Arslan M; Gamal El-Din M
    Water Res; 2024 Jul; 258():121757. PubMed ID: 38768520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): a comparative study on treatment and optimization in kaolin suspension.
    Ho YC; Norli I; Alkarkhi AF; Morad N
    Bioresour Technol; 2010 Feb; 101(4):1166-74. PubMed ID: 19854044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil.
    Wen Q; Chen Z; Zhao Y; Zhang H; Feng Y
    J Hazard Mater; 2010 Mar; 175(1-3):955-9. PubMed ID: 19932560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge.
    Yu F; Fu R; Xie Y; Chen W
    Int J Environ Res Public Health; 2015 Apr; 12(4):4214-30. PubMed ID: 25893998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of hydroponically grown head lettuce on residual monomer from polyacrylamide.
    Mroczek E; Konieczny P; Kleiber T; Waśkiewicz A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(8):1399-405. PubMed ID: 24916210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation.
    Zeng Y; Yang C; Zhang J; Pu W
    J Hazard Mater; 2007 Aug; 147(3):991-6. PubMed ID: 17350754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of conditioning by PAM polymers with different charges on the structural and characteristic evolutions of water treatment residuals.
    Yan WL; Wang YL; Chen YJ
    Water Res; 2013 Nov; 47(17):6445-56. PubMed ID: 24011843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a hybrid polyacrylamide and its flocculation properties in cyanide tailing suspensions.
    Liu Y; Lv C; Ding J; Qian P; Yu Y; Ye S; Chen Y
    Water Sci Technol; 2017 Nov; 76(9-10):2482-2493. PubMed ID: 29144306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.