These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 25253057)
1. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Grison CM; Mazel M; Sellini A; Escande V; Biton J; Grison C Environ Sci Pollut Res Int; 2015 Apr; 22(8):5667-76. PubMed ID: 25253057 [TBL] [Abstract][Full Text] [Related]
2. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Grison CM; Jackson S; Merlot S; Dobson A; Grison C Int J Syst Evol Microbiol; 2015 May; 65(Pt 5):1525-1530. PubMed ID: 25701848 [TBL] [Abstract][Full Text] [Related]
3. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities. Mohamad R; Maynaud G; Le Quéré A; Vidal C; Klonowska A; Yashiro E; Cleyet-Marel JC; Brunel B Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27793823 [TBL] [Abstract][Full Text] [Related]
4. Metal resistant rhizobia and ultrastructure of Anthyllis vulneraria nodules from zinc and lead contaminated tailing in Poland. Sujkowska-Rybkowska M; Ważny R Int J Phytoremediation; 2018 Jun; 20(7):709-720. PubMed ID: 29723046 [TBL] [Abstract][Full Text] [Related]
5. Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L. El Aafi N; Saidi N; Maltouf AF; Perez-Palacios P; Dary M; Brhada F; Pajuelo E Environ Sci Pollut Res Int; 2015 Mar; 22(6):4500-12. PubMed ID: 25315928 [TBL] [Abstract][Full Text] [Related]
6. Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Vidal C; Chantreuil C; Berge O; Mauré L; Escarré J; Béna G; Brunel B; Cleyet-Marel JC Int J Syst Evol Microbiol; 2009 Apr; 59(Pt 4):850-5. PubMed ID: 19329619 [TBL] [Abstract][Full Text] [Related]
7. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Maynaud G; Willems A; Soussou S; Vidal C; Mauré L; Moulin L; Cleyet-Marel JC; Brunel B Syst Appl Microbiol; 2012 Mar; 35(2):65-72. PubMed ID: 22221859 [TBL] [Abstract][Full Text] [Related]
8. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971 [TBL] [Abstract][Full Text] [Related]
9. The acclimatization strategies of kidney vetch (Anthyllis vulneraria L.) to Pb toxicity. Piwowarczyk B; Tokarz K; Muszyńska E; Makowski W; Jędrzejczyk R; Gajewski Z; Hanus-Fajerska E Environ Sci Pollut Res Int; 2018 Jul; 25(20):19739-19752. PubMed ID: 29736650 [TBL] [Abstract][Full Text] [Related]
10. Dark septate endophytes isolated from non-hyperaccumulator plants can increase phytoextraction of Cd and Zn by the hyperaccumulator Noccaea caerulescens. Yung L; Blaudez D; Maurice N; Azou-Barré A; Sirguey C Environ Sci Pollut Res Int; 2021 Apr; 28(13):16544-16557. PubMed ID: 33387325 [TBL] [Abstract][Full Text] [Related]
11. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Rangel WM; Thijs S; Janssen J; Oliveira Longatti SM; Bonaldi DS; Ribeiro PR; Jambon I; Eevers N; Weyens N; Vangronsveld J; Moreira FM Int J Phytoremediation; 2017 Feb; 19(2):142-156. PubMed ID: 27409290 [TBL] [Abstract][Full Text] [Related]
12. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. Qiu R; Fang X; Tang Y; Du S; Zeng X; Brewer E Int J Phytoremediation; 2006; 8(4):299-310. PubMed ID: 17305304 [TBL] [Abstract][Full Text] [Related]
13. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Chaney RL; Angle JS; McIntosh MS; Reeves RD; Li YM; Brewer EP; Chen KY; Roseberg RJ; Perner H; Synkowski EC; Broadhurst CL; Wang S; Baker AJ Z Naturforsch C J Biosci; 2005; 60(3-4):190-8. PubMed ID: 15948583 [TBL] [Abstract][Full Text] [Related]
14. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
15. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Wójcik M; Sugier P; Siebielec G Sci Total Environ; 2014 Jul; 487():313-22. PubMed ID: 24793328 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction from mine spoils: insights from New Caledonia. Losfeld G; Mathieu R; L'Huillier L; Fogliani B; Jaffré T; Grison C Environ Sci Pollut Res Int; 2015 Apr; 22(8):5608-19. PubMed ID: 25427895 [TBL] [Abstract][Full Text] [Related]
18. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants. Escande V; Renard BL; Grison C Environ Sci Pollut Res Int; 2015 Apr; 22(8):5633-52. PubMed ID: 25263417 [TBL] [Abstract][Full Text] [Related]
19. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Tlustoš P; Břendová K; Száková J; Najmanová J; Koubová K Int J Phytoremediation; 2016; 18(2):110-5. PubMed ID: 26280307 [TBL] [Abstract][Full Text] [Related]
20. Native plant communities in an abandoned Pb-Zn mining area of northern Spain: implications for phytoremediation and germplasm preservation. Barrutia O; Artetxe U; Hernández A; Olano JM; García-Plazaola JI; Garbisu C; Becerril JM Int J Phytoremediation; 2011 Mar; 13(3):256-70. PubMed ID: 21598791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]