These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25253248)

  • 1. Red-mediated recombineering of Salmonella enterica genomes.
    Czarniak F; Hensel M
    Methods Mol Biol; 2015; 1225():63-79. PubMed ID: 25253248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of a new recombineering system by gap repair].
    Li SH; Hong X; Yu M; Chen W; Huang CF; Zhou JG
    Yi Chuan Xue Bao; 2005 May; 32(5):533-7. PubMed ID: 16018266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond.
    Sawitzke JA; Thomason LC; Costantino N; Bubunenko M; Datta S; Court DL
    Methods Enzymol; 2007; 421():171-99. PubMed ID: 17352923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis.
    Liao SW; Lee JJ; Ptak CP; Wu YC; Hsuan SL; Kuo CJ; Chen TH
    Arch Microbiol; 2018 Mar; 200(2):219-225. PubMed ID: 28975374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying bacteriophage lambda with recombineering.
    Thomason LC; Oppenheim AB; Court DL
    Methods Mol Biol; 2009; 501():239-51. PubMed ID: 19066825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo cloning of large chromosomal segments into a BAC derivative by generalized transduction and recombineering in Salmonella enterica.
    Kato A
    J Gen Appl Microbiol; 2016 Nov; 62(5):225-232. PubMed ID: 27666751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica.
    Gerlach RG; Jäckel D; Hölzer SU; Hensel M
    Appl Environ Microbiol; 2009 Mar; 75(6):1575-80. PubMed ID: 19151186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duplication-Insertion Recombineering: a fast and scar-free method for efficient transfer of multiple mutations in bacteria.
    Näsvall J; Knöppel A; Andersson DI
    Nucleic Acids Res; 2017 Mar; 45(5):e33. PubMed ID: 27899661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
    Song J; Dong H; Ma C; Zhao B; Shang G
    FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.
    Pines G; Freed EF; Winkler JD; Gill RT
    ACS Synth Biol; 2015 Nov; 4(11):1176-85. PubMed ID: 25856528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophage recombination systems and biotechnical applications.
    Nafissi N; Slavcev R
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2841-51. PubMed ID: 24442504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Gene fusion of egfp & kan and recombinant plasmid construction by red mediated in vivo homologous recombination].
    Wu Y; Li SH; Shi QG; Liu DS; Zhou JG
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):598-601. PubMed ID: 17822029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa.
    Lesic B; Rahme LG
    BMC Mol Biol; 2008 Feb; 9():20. PubMed ID: 18248677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium.
    Karlinsey JE
    Methods Enzymol; 2007; 421():199-209. PubMed ID: 17352924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recombineering and its application].
    Zhou JG; Hong X; Huang CF
    Yi Chuan Xue Bao; 2003 Oct; 30(10):983-8. PubMed ID: 14669518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Efficiency, Two-Step Scarless-Markerless Genome Genetic Modification in Salmonella enterica.
    Geng S; Tian Q; An S; Pan Z; Chen X; Jiao X
    Curr Microbiol; 2016 Jun; 72(6):700-6. PubMed ID: 26883127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid engineering of bacterial reporter gene fusions by using Red recombination.
    Gerlach RG; Hölzer SU; Jäckel D; Hensel M
    Appl Environ Microbiol; 2007 Jul; 73(13):4234-42. PubMed ID: 17513596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombineering-Mediated Genome Editing in Burkholderiales Strains.
    Wang X; Liu J; Zheng W; Zhang Y; Bian X
    Methods Mol Biol; 2022; 2479():21-36. PubMed ID: 35583730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35.
    Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.