These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25253248)

  • 21. Direct and Inverted Repeat stimulated excision (DIRex): Simple, single-step, and scar-free mutagenesis of bacterial genes.
    Näsvall J
    PLoS One; 2017; 12(8):e0184126. PubMed ID: 28854250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of lambda Red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes.
    Yamamoto S; Izumiya H; Morita M; Arakawa E; Watanabe H
    Gene; 2009 Jun; 438(1-2):57-64. PubMed ID: 19268696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and mechanism of the Red recombination system of bacteriophage λ.
    Caldwell BJ; Bell CE
    Prog Biophys Mol Biol; 2019 Oct; 147():33-46. PubMed ID: 30904699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacteriophage recombineering in the lytic state using the lambda red recombinases.
    Fehér T; Karcagi I; Blattner FR; Pósfai G
    Microb Biotechnol; 2012 Jul; 5(4):466-76. PubMed ID: 21910851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A recombineering-based gene tagging system for Arabidopsis.
    Alonso JM; Stepanova AN
    Methods Mol Biol; 2015; 1227():233-43. PubMed ID: 25239749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A versatile platform strain for high-fidelity multiplex genome editing.
    Egbert RG; Rishi HS; Adler BA; McCormick DM; Toro E; Gill RT; Arkin AP
    Nucleic Acids Res; 2019 Apr; 47(6):3244-3256. PubMed ID: 30788501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome engineering using targeted oligonucleotide libraries and functional selection.
    Diner EJ; Garza-Sánchez F; Hayes CS
    Methods Mol Biol; 2011; 765():71-82. PubMed ID: 21815087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing live Shigella vaccines using lambda Red recombineering.
    Ranallo RT; Barnoy S; Thakkar S; Urick T; Venkatesan MM
    FEMS Immunol Med Microbiol; 2006 Aug; 47(3):462-9. PubMed ID: 16872384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system.
    Hu S; Fu J; Huang F; Ding X; Stewart AF; Xia L; Zhang Y
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2165-72. PubMed ID: 24297480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential requirements of singleplex and multiplex recombineering of large DNA constructs.
    Reddy TR; Kelsall EJ; Fevat LM; Munson SE; Cowley SM
    PLoS One; 2015; 10(5):e0125533. PubMed ID: 25954970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome.
    Blank K; Hensel M; Gerlach RG
    PLoS One; 2011 Jan; 6(1):e15763. PubMed ID: 21264289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Random luxCDABE Transcriptional Fusions in the Genome of Salmonella enterica.
    de la Rosa-Altura JJ; Benesova B; Panadero-Medianero C; Amador-Álvarez A; Aguilera-Herce J; Araujo-Garrido JL; Bernal-Bayard J; Ramos-Morales F
    Methods Mol Biol; 2021; 2182():141-151. PubMed ID: 32894493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes.
    Serra-Moreno R; Acosta S; Hernalsteens JP; Jofre J; Muniesa M
    BMC Mol Biol; 2006 Sep; 7():31. PubMed ID: 16984631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.
    Marinelli LJ; Piuri M; Swigonová Z; Balachandran A; Oldfield LM; van Kessel JC; Hatfull GF
    PLoS One; 2008; 3(12):e3957. PubMed ID: 19088849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid method for the construction of Salmonella enterica Serovar Typhimurium vaccine carrier strains.
    Husseiny MI; Hensel M
    Infect Immun; 2005 Mar; 73(3):1598-605. PubMed ID: 15731059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.
    Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2015 Aug; 81(15):5103-14. PubMed ID: 26002895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation and use of site-directed chromosomal cyaA' translational fusions in Salmonella enterica.
    Ramos-Morales F; Cardenal-Muñoz E; Cordero-Alba M; Baisón-Olmo F
    Methods Mol Biol; 2015; 1225():93-104. PubMed ID: 25253250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scarless engineering of the Escherichia coli genome.
    Fehér T; Karcagi I; Gyorfy Z; Umenhoffer K; Csörgo B; Pósfai G
    Methods Mol Biol; 2008; 416():251-9. PubMed ID: 18392972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering.
    Santos CN; Yoshikuni Y
    Nat Protoc; 2014; 9(6):1320-36. PubMed ID: 24833171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-based identification and molecular analyses of pathogenicity islands and genomic islands in Salmonella enterica.
    Hensel M
    Methods Mol Biol; 2007; 394():77-88. PubMed ID: 18363232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.