BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25253296)

  • 1. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications.
    Akondi V; Jewel MA; Vohnsen B
    J Biomed Opt; 2014 Sep; 19(9):96014. PubMed ID: 25253296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront-coding technique for inexpensive and robust retinal imaging.
    Arines J; Hernandez RO; Sinzinger S; Grewe A; Acosta E
    Opt Lett; 2014 Jul; 39(13):3986-8. PubMed ID: 24978788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive optics with a programmable phase modulator: applications in the human eye.
    Prieto P; Fernández E; Manzanera S; Artal P
    Opt Express; 2004 Aug; 12(17):4059-71. PubMed ID: 19483947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.
    Song H; Fraanje R; Schitter G; Kroese H; Vdovin G; Verhaegen M
    Opt Express; 2010 Nov; 18(23):24070-84. PubMed ID: 21164754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration estimation from single point image in a simulated adaptive optics system.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3173-6. PubMed ID: 17282918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimorph deformable mirror-based adaptive optics scanning laser ophthalmoscope for the clinical design and performance.
    Wang Y; He Y; Wei L; Yang J; Li X; Zhou H; Shi G; Zhang Y
    Neurophotonics; 2019 Oct; 6(4):041111. PubMed ID: 31720308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes.
    Doble N; Miller DT; Yoon G; Williams DR
    Appl Opt; 2007 Jul; 46(20):4501-14. PubMed ID: 17579706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed-loop adaptive optics in the human eye.
    Fernández EJ; Iglesias I; Artal P
    Opt Lett; 2001 May; 26(10):746-8. PubMed ID: 18040440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-loop adaptive optics with a single element for wavefront sensing and correction.
    Martínez-Cuenca R; Durán V; Arines J; Ares J; Jaroszewicz Z; Bará S; Martínez-León L; Lancis J
    Opt Lett; 2011 Sep; 36(18):3702-4. PubMed ID: 21931438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor.
    Chamot SR; Dainty C; Esposito S
    Opt Express; 2006 Jan; 14(2):518-26. PubMed ID: 19503366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution retinal imaging through open-loop adaptive optics.
    Li C; Xia M; Li D; Mu Q; Xuan L
    J Biomed Opt; 2010; 15(4):046009. PubMed ID: 20799811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic eye model for adaptive optics testing.
    Fernández EJ; Artal P
    Appl Opt; 2007 Oct; 46(28):6971-7. PubMed ID: 17906726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics for dynamic aberration compensation using parallel model-based controllers based on a field programmable gate array.
    Wu YC; Chang JC; Chang CY
    Opt Express; 2021 Jul; 29(14):21129-21142. PubMed ID: 34265906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-precision open-loop adaptive optics system based on LC-SLM.
    Li C; Xia M; Mu Q; Jiang B; Xuan L; Cao Z
    Opt Express; 2009 Jun; 17(13):10774-81. PubMed ID: 19550476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing.
    Akondi V; Vohnsen B
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-deformable-mirror adaptive optics system for phase compensation.
    Hu S; Xu B; Zhang X; Hou J; Wu J; Jiang W
    Appl Opt; 2006 Apr; 45(12):2638-42. PubMed ID: 16633413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of non-common path aberrations in pyramid wavefront sensors to recover the optimal magnitude gain using a deformable lens.
    Quintavalla M; Bergomi M; Magrin D; Bonora S; Ragazzoni R
    Appl Opt; 2020 Jun; 59(17):5151-5157. PubMed ID: 32543534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
    Yang H; Soloviev O; Verhaegen M
    Opt Express; 2015 Sep; 23(19):24587-601. PubMed ID: 26406661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.