These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25253516)

  • 1. Probing the rate-limiting step for intramolecular transfer of a transcription factor between specific sites on the same DNA molecule by (15)Nz-exchange NMR spectroscopy.
    Ryu KS; Tugarinov V; Clore GM
    J Am Chem Soc; 2014 Oct; 136(41):14369-72. PubMed ID: 25253516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA.
    Iwahara J; Zweckstetter M; Clore GM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15062-7. PubMed ID: 17008406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of enhanced translocation of a homeodomain between DNA cognate sites by NMR exchange spectroscopy.
    Iwahara J; Clore GM
    J Am Chem Soc; 2006 Jan; 128(2):404-5. PubMed ID: 16402815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of protein/protein interactions on global intermolecular translocation rates of the transcription factors Sox2 and Oct1 between DNA cognate sites analyzed by z-exchange NMR spectroscopy.
    Takayama Y; Clore GM
    J Biol Chem; 2012 Aug; 287(32):26962-70. PubMed ID: 22718759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TROSY-based z-exchange spectroscopy: application to the determination of the activation energy for intermolecular protein translocation between specific sites on different DNA molecules.
    Sahu D; Clore GM; Iwahara J
    J Am Chem Soc; 2007 Oct; 129(43):13232-7. PubMed ID: 17918842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global jumping and domain-specific intersegment transfer between DNA cognate sites of the multidomain transcription factor Oct-1.
    Doucleff M; Clore GM
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):13871-6. PubMed ID: 18772384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions.
    Winter RB; Berg OG; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6961-77. PubMed ID: 7032584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between minor and major groove-binding transcription factors Sox2 and Oct1 in translocation on DNA studied by paramagnetic and diamagnetic NMR.
    Takayama Y; Clore GM
    J Biol Chem; 2012 Apr; 287(18):14349-63. PubMed ID: 22396547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring translocation of proteins on DNA by NMR.
    Clore GM
    J Biomol NMR; 2011 Nov; 51(3):209-19. PubMed ID: 21847629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting transient intermediates in macromolecular binding by paramagnetic NMR.
    Iwahara J; Clore GM
    Nature; 2006 Apr; 440(7088):1227-30. PubMed ID: 16642002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra- and intermolecular translocation of the bi-domain transcription factor Oct1 characterized by liquid crystal and paramagnetic NMR.
    Takayama Y; Clore GM
    Proc Natl Acad Sci U S A; 2011 May; 108(22):E169-76. PubMed ID: 21555551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation.
    Iwahara J; Jung YS; Clore GM
    J Am Chem Soc; 2007 Mar; 129(10):2971-80. PubMed ID: 17300195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement.
    Clore GM; Tang C; Iwahara J
    Curr Opin Struct Biol; 2007 Oct; 17(5):603-16. PubMed ID: 17913493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of translocation of the Zif268 protein between its target DNA Sites.
    Takayama Y; Sahu D; Iwahara J
    Biochemistry; 2010 Sep; 49(37):7998-8005. PubMed ID: 20718505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching DNA via a "Monkey Bar" mechanism: the significance of disordered tails.
    Vuzman D; Azia A; Levy Y
    J Mol Biol; 2010 Feb; 396(3):674-84. PubMed ID: 19958775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete-State Kinetics Model for NMR-Based Analysis of Protein Translocation on DNA at Equilibrium.
    Sahu D; Iwahara J
    J Phys Chem B; 2017 Oct; 121(41):9548-9556. PubMed ID: 28922916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of TROSY for detection and suppression of conformational exchange NMR line broadening in biological macromolecules.
    Pervushin K
    J Biomol NMR; 2001 Jul; 20(3):275-85. PubMed ID: 11519750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the interaction interface and conformational dynamics of human TGIF1 homeodomain upon the binding of consensus DNA.
    Li S; Hu R; Yao H; Long D; Luo F; Zhou X; Zhang X; Liu M; Zhu J; Yang Y
    Biochim Biophys Acta Proteins Proteom; 2018 Oct; 1866(10):1021-1028. PubMed ID: 30048701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory.
    Berg OG; Winter RB; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6929-48. PubMed ID: 7317363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.