These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 25253562)

  • 1. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci.
    Zhao Y; Chen J; Freudenberg JM; Meng Q; Rajpal DK; Yang X
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):928-41. PubMed ID: 26966275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene prioritization for livestock diseases by data integration.
    Jiang L; Sørensen P; Thomsen B; Edwards SM; Skarman A; Røntved CM; Lund MS; Workman CT
    Physiol Genomics; 2012 Mar; 44(5):305-17. PubMed ID: 22234994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores.
    Gonçalves JP; Francisco AP; Moreau Y; Madeira SC
    PLoS One; 2012; 7(11):e49634. PubMed ID: 23185389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.
    Masino AJ; Dechene ET; Dulik MC; Wilkens A; Spinner NB; Krantz ID; Pennington JW; Robinson PN; White PS
    BMC Bioinformatics; 2014 Jul; 15(1):248. PubMed ID: 25047600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.
    Merelli I; Calabria A; Cozzi P; Viti F; Mosca E; Milanesi L
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S9. PubMed ID: 23369106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GUILDify: a web server for phenotypic characterization of genes through biological data integration and network-based prioritization algorithms.
    Guney E; Garcia-Garcia J; Oliva B
    Bioinformatics; 2014 Jun; 30(12):1789-90. PubMed ID: 24532728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.
    Guney E; Oliva B
    PLoS One; 2014; 9(4):e94686. PubMed ID: 24733074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associating genes and protein complexes with disease via network propagation.
    Vanunu O; Magger O; Ruppin E; Shlomi T; Sharan R
    PLoS Comput Biol; 2010 Jan; 6(1):e1000641. PubMed ID: 20090828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.
    Xiang Z; Qin T; Qin ZS; He Y
    BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S9. PubMed ID: 24555475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomedical hypothesis generation by text mining and gene prioritization.
    Petric I; Ligeti B; Gyorffy B; Pongor S
    Protein Pept Lett; 2014; 21(8):847-57. PubMed ID: 23855662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks.
    Erten S; Bebek G; Koyutürk M
    J Comput Biol; 2011 Nov; 18(11):1561-74. PubMed ID: 22035267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.