These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 2525405)
1. Purification from a yeast mutant of mitochondrial F1 with modified beta-subunit. High affinity for nucleotides and high negative cooperativity of ATPase activity. Falson P; Di Pietro A; Jault JM; Gautheron DC; Boutry M Biochim Biophys Acta; 1989 Jun; 975(1):119-26. PubMed ID: 2525405 [TBL] [Abstract][Full Text] [Related]
2. Structure-function relationships of mitochondrial ATPase-ATPsynthase using Schizosaccharomyces pombe yeast mutants with altered F1 subunits. Di Pietro A; Jault JM; Falson P; Divita G; Gautheron DC Biochimie; 1989 Aug; 71(8):931-40. PubMed ID: 2529909 [TBL] [Abstract][Full Text] [Related]
3. Revertant of the yeast Schizosaccharomyces pombe with modified alpha subunits of mitochondrial ATPase-ATPsynthase: impaired nucleotide interactions with soluble and membrane-bound enzyme. Falson P; Di Pietro A; Darbouret D; Jault JM; Gautheron DC; Boutry M; Goffeau A Biochem Biophys Res Commun; 1987 Nov; 148(3):1182-8. PubMed ID: 2891355 [TBL] [Abstract][Full Text] [Related]
4. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase. Beharry S; Bragg PD Eur J Biochem; 1996 Aug; 240(1):165-72. PubMed ID: 8797850 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification of thiol groups of mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe. Involvement of alpha- and gamma-subunits in the enzyme activity. Falson P; Di Pietro A; Gautheron DC J Biol Chem; 1986 Jun; 261(16):7151-9. PubMed ID: 2872213 [TBL] [Abstract][Full Text] [Related]
6. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. Mueller DM; Indyk V; McGill L Eur J Biochem; 1994 Jun; 222(3):991-9. PubMed ID: 8026510 [TBL] [Abstract][Full Text] [Related]
7. Glutamine 170 to tyrosine substitution in yeast mitochondrial F1 beta-subunit increases catalytic site interaction with GDP and IDP and produces negative cooperativity of GTP and ITP hydrolysis. Jault JM; Divita G; Allison WS; Di Pietro A J Biol Chem; 1993 Oct; 268(28):20762-7. PubMed ID: 8407901 [TBL] [Abstract][Full Text] [Related]
8. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
9. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287 [TBL] [Abstract][Full Text] [Related]
10. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites. Ye JJ; Du J; Lin ZH Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570 [TBL] [Abstract][Full Text] [Related]
11. Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition. Penin F; Di Pietro A; Godinot C; Gautheron DC Biochemistry; 1988 Dec; 27(25):8969-74. PubMed ID: 2906804 [TBL] [Abstract][Full Text] [Related]
12. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites. Bulygin VV; Vinogradov AD FEBS Lett; 1988 Aug; 236(2):497-500. PubMed ID: 2900778 [TBL] [Abstract][Full Text] [Related]
14. The effect of depletion of nucleotide and of delta and epsilon subunits on ATP synthesis in dimethyl sulfoxide by F1-ATPase of Escherichia coli. Beharry S; Bragg PD Biochem Biophys Res Commun; 1993 Jul; 194(1):483-9. PubMed ID: 8333861 [TBL] [Abstract][Full Text] [Related]
15. Simple and rapid purification of F1-ATPase from bovine heart mitochondria by affinity chromatography. Temesgen B; Eschrich K; Hofmann E Biomed Biochim Acta; 1991; 50(1):17-23. PubMed ID: 1830476 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems. Matsuno-Yagi A; Hatefi Y Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of beef heart mitochondrial F1-ATPase by the 2',3'-dialdehyde derivatives of adenine nucleotides. de Melo DF; Satre M; Vignais PV FEBS Lett; 1984 Apr; 169(1):101-6. PubMed ID: 6232149 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial F1-ATPase moiety from Phycomyces blakesleeanus: purification, characterization, and kinetic studies. de Vicente JI; del Valle P; Busto F; de Arriaga D; Soler J Biochem Cell Biol; 1991 Jul; 69(7):454-9. PubMed ID: 1838928 [TBL] [Abstract][Full Text] [Related]
19. Alpha subunit of mitochondrial F1-ATPase from the fission yeast. Deduced sequence of the wild type and identification of a mutation that alters apparent negative cooperativity. Falson P; Maffey L; Conrath K; Boutry M J Biol Chem; 1991 Jan; 266(1):287-93. PubMed ID: 1824697 [TBL] [Abstract][Full Text] [Related]
20. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]