BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25254056)

  • 1. Water Extract of Fructus Hordei Germinatus Shows Antihyperprolactinemia Activity via Dopamine D2 Receptor.
    Wang X; Ma L; Zhang EJ; Zou JL; Guo H; Peng SW; Wu JH
    Evid Based Complement Alternat Med; 2014; 2014():579054. PubMed ID: 25254056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Not only dopamine D2 receptors involved in Peony-Glycyrrhiza Decoction, an herbal preparation against antipsychotic-associated hyperprolactinemia.
    Wang D; Wong HK; Zhang L; McAlonan GM; Wang XM; Sze SC; Feng YB; Zhang ZJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2012 Dec; 39(2):332-8. PubMed ID: 22796279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of selfheal extract in treating hyperprolactinemia.
    Luan S; Mu M; Sun L
    Cancer Biomark; 2017 Dec; 20(4):575-580. PubMed ID: 28946556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic effects of total alkaloids of Fructus Hordei Germinatus in hyperprolactinemis rats.
    Xiong W; Li M; Jin-Hu W
    Pak J Pharm Sci; 2014 Nov; 27(6 Suppl):2087-93. PubMed ID: 25410078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total barley maiya alkaloids inhibit prolactin secretion by acting on dopamine D2 receptor and protein kinase A targets.
    Gong X; Tao J; Wang Y; Wu J; An J; Meng J; Wang X; Chen Y; Zou J
    J Ethnopharmacol; 2021 Jun; 273():113994. PubMed ID: 33711439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the regulatory effect of Peony-Glycyrrhiza Decoction on prolactin hyperactivity and underlying mechanism in hyperprolactinemia rat model.
    Wang D; Wang W; Zhou Y; Wang J; Jia D; Wong HK; Zhang ZJ
    Neurosci Lett; 2015 Oct; 606():60-5. PubMed ID: 26297122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy and Mechanism of Action of Yiru Tiaojing Granule Against Hyperprolactinemia In Vitro and In Vivo.
    Wei Y; Wang X; Yu Z; Zhou W; Wang L; Qin F; Wang C; Hou L
    Planta Med; 2015 Sep; 81(14):1255-62. PubMed ID: 26252831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hyperprolactinemia on the control of luteinizing hormone and follicle-stimulating hormone secretion in the male rat.
    Smith MS; Bartke A
    Biol Reprod; 1987 Feb; 36(1):138-47. PubMed ID: 3105612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 18β-Glycyrrhetinic Acid, a Novel Naturally Derived Agent, Suppresses Prolactin Hyperactivity and Reduces Antipsychotic-Induced Hyperprolactinemia in In Vitro and In Vivo Models.
    Wang D; Zhang Y; Wang C; Jia D; Cai G; Lu J; Wang D; Zhang ZJ
    Neurochem Res; 2016 Sep; 41(9):2233-42. PubMed ID: 27161375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Hordei Fructus Germinatus on differential gene expression in the prolactin signaling pathway in the mammary gland of lactating rats.
    Zhang Z; Wei Q; Zeng Y; Jia X; Su H; Lin W; Xing N; Bai H; He Y; Wang Q
    J Ethnopharmacol; 2021 Mar; 268():113589. PubMed ID: 33217517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hyperprolactinemia on PRL-receptor expression and activation of Stat and Mapk cell signaling in the prostate of long-term sexually-active rats.
    Pascual-Mathey LI; Rojas-Duran F; Aranda-Abreu GE; Manzo J; Herrera-Covarrubias D; Muñoz-Zavaleta DA; Garcia LI; Hernandez ME
    Physiol Behav; 2016 Apr; 157():170-7. PubMed ID: 26873413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of prolactin on the expression of luteinizing hormone receptors during cell differentiation in cultured rat granulosa cells.
    Hirakawa T; Minegishi T; Tano M; Kameda T; Kishi H; Ibuki Y; Mizutani T; Miyamoto K
    Endocrinology; 1999 Aug; 140(8):3444-51. PubMed ID: 10433199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine D4 receptor-mediated inhibition of cyclic adenosine 3',5'-monophosphate production does not affect prolactin regulation.
    Sanyal S; Van Tol HH
    Endocrinology; 1997 May; 138(5):1871-8. PubMed ID: 9112381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hyperprolactinemia on luteinizing hormone and prolactin secretion assessed using the reverse hemolytic plaque assay.
    Sortino MA; Wise PM
    Biol Reprod; 1989 Oct; 41(4):618-25. PubMed ID: 2695175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the control of prolactin, growth hormone and gonadotropin secretion in prepubertal rats.
    González LC; Pinilla L; Tena-Sempere M; Aguilar E
    J Endocrinol; 1999 Sep; 162(3):417-24. PubMed ID: 10467233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships among LH, FSH and prolactin secretion, storage and response to secretagogue and hypothalamic GnRH content in ovariectomized pony mares administered testosterone, dihydrotestosterone, estradiol, progesterone, dexamethasone or follicular fluid.
    Thompson DL; Garza F; St George RL; Rabb MH; Barry BE; French DD
    Domest Anim Endocrinol; 1991 Apr; 8(2):189-99. PubMed ID: 1906388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting effect of the Maillard reaction products produced during the stir-frying process of
    Wu L; Tan LX; Gong FF; Xia Y; Chu RG; Yang HS
    Food Sci Biotechnol; 2021 May; 30(5):631-642. PubMed ID: 34123460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of dopamine on the altered release of prolactin, luteinizing hormone, and follicle-stimulating hormone induced by interleukin-2 in vitro.
    Karanth S; Marubayashi U; McCann SM
    Neuroendocrinology; 1992 Dec; 56(6):871-80. PubMed ID: 1369597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells.
    Ezzat AA; Saito H; Sawada T; Yaegashi T; Goto Y; Nakajima Y; Jin J; Yamashita T; Sawai K; Hashizume T
    Anim Reprod Sci; 2010 Sep; 121(3-4):267-72. PubMed ID: 20594780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Mechanism Regulating Dopamine Receptor Type 2 Signal Transduction in Pituitary Tumoral Cells: The Role of cAMP/PKA-Induced Filamin A Phosphorylation.
    Mangili F; Treppiedi D; Catalano R; Marra G; Di Muro G; Spada A; Arosio M; Peverelli E; Mantovani G
    Front Endocrinol (Lausanne); 2020; 11():611752. PubMed ID: 33664708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.