These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25254360)

  • 21. Automated reagent-dispensing system for microfluidic cell biology assays.
    Ly J; Masterman-Smith M; Ramakrishnan R; Sun J; Kokubun B; van Dam RM
    J Lab Autom; 2013 Dec; 18(6):530-41. PubMed ID: 24051515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.
    Chen A; Pan T
    Lab Chip; 2014 Sep; 14(17):3401-8. PubMed ID: 25007840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing cellular dynamics with a chemical signal generator.
    Kuczenski B; Ruder WC; Messner WC; Leduc PR
    PLoS One; 2009; 4(3):e4847. PubMed ID: 19287482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.
    Babahosseini H; Misteli T; DeVoe DL
    Lab Chip; 2019 Jan; 19(3):493-502. PubMed ID: 30623951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An electrically-controlled programmable microfluidic concentration waveform generator.
    Garrison J; Li Z; Palanisamy B; Wang L; Seker E
    J Biol Eng; 2018; 12():31. PubMed ID: 30564283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel.
    Faley S; Seale K; Hughey J; Schaffer DK; VanCompernolle S; McKinney B; Baudenbacher F; Unutmaz D; Wikswo JP
    Lab Chip; 2008 Oct; 8(10):1700-12. PubMed ID: 18813394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multichannel Synchronous Hydrodynamic Gating Coupling with Concentration Gradient Generator for High-Throughput Probing Dynamic Signaling of Single Cells.
    Guo Y; Gao Z; Liu Y; Li S; Zhu J; Chen P; Liu BF
    Anal Chem; 2020 Sep; 92(17):12062-12070. PubMed ID: 32786485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pneumatic oscillator circuits for timing and control of integrated microfluidics.
    Duncan PN; Nguyen TV; Hui EE
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18104-9. PubMed ID: 24145429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
    Liu W; Liu D; Hu R; Huang Z; Sun M; Han K
    Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible Trapping and Manipulation of Single Cells on a Chip by Modulating Phases and Amplitudes of Electrical Signals Applied onto Microelectrodes.
    Zheng T; Zhang Z; Zhu R
    Anal Chem; 2019 Apr; 91(7):4479-4487. PubMed ID: 30860356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Modular µSiM Reconfigured: Integration of Microfluidic Capabilities to Study In Vitro Barrier Tissue Models under Flow.
    Mansouri M; Ahmed A; Ahmad SD; McCloskey MC; Joshi IM; Gaborski TR; Waugh RE; McGrath JL; Day SW; Abhyankar VV
    Adv Healthc Mater; 2022 Nov; 11(21):e2200802. PubMed ID: 35953453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic platforms for single-cell protein analysis.
    Liu Y; Singh AK
    J Lab Autom; 2013 Dec; 18(6):446-54. PubMed ID: 23821679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.