These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25254431)

  • 21. Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics.
    Banás P; Walter NG; Sponer J; Otyepka M
    J Phys Chem B; 2010 Jul; 114(26):8701-12. PubMed ID: 20536206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A divalent cation-dependent variant of the
    Lau MW; Trachman RJ; Ferré-D'Amaré AR
    RNA; 2017 Mar; 23(3):355-364. PubMed ID: 27932587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme.
    Posakony JJ; Ferré-D'Amaré AR
    J Org Chem; 2013 May; 78(10):4730-43. PubMed ID: 23578404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate.
    Klein DJ; Ferré-D'Amaré AR
    Science; 2006 Sep; 313(5794):1752-6. PubMed ID: 16990543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism and distribution of glmS ribozymes.
    McCown PJ; Winkler WC; Breaker RR
    Methods Mol Biol; 2012; 848():113-29. PubMed ID: 22315066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus.
    Lünse CE; Schmidt MS; Wittmann V; Mayer G
    ACS Chem Biol; 2011 Jul; 6(7):675-8. PubMed ID: 21486059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of metabolite-riboswitch interactions using nucleotide analog interference mapping and suppression.
    Soukup JK; Soukup GA
    Methods Mol Biol; 2009; 540():193-206. PubMed ID: 19381561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor.
    Cochrane JC; Lipchock SV; Strobel SA
    Chem Biol; 2007 Jan; 14(1):97-105. PubMed ID: 17196404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for preorganization of the glmS ribozyme ligand binding pocket.
    Hampel KJ; Tinsley MM
    Biochemistry; 2006 Jun; 45(25):7861-71. PubMed ID: 16784238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme.
    Jansen JA; McCarthy TJ; Soukup GA; Soukup JK
    Nat Struct Mol Biol; 2006 Jun; 13(6):517-23. PubMed ID: 16699515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence.
    Lau MW; Ferré-D'Amaré AR
    Nat Chem Biol; 2013 Dec; 9(12):805-10. PubMed ID: 24096303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme.
    Brooks KM; Hampel KJ
    Biochemistry; 2009 Jun; 48(24):5669-78. PubMed ID: 19449899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of gene expression by a natural metabolite-responsive ribozyme.
    Winkler WC; Nahvi A; Roth A; Collins JA; Breaker RR
    Nature; 2004 Mar; 428(6980):281-6. PubMed ID: 15029187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure.
    Soukup GA
    Nucleic Acids Res; 2006; 34(3):968-75. PubMed ID: 16464827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.
    Dubecký M; Walter NG; Šponer J; Otyepka M; Banáš P
    Biopolymers; 2015 Oct; 103(10):550-62. PubMed ID: 25858644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small RNA-binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli.
    Khan MA; Durica-Mitic S; Göpel Y; Heermann R; Görke B
    EMBO J; 2020 Mar; 39(6):e103848. PubMed ID: 32065419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural and functional uniqueness of the glmS ribozyme.
    Soukup JK
    Prog Mol Biol Transl Sci; 2013; 120():173-93. PubMed ID: 24156944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo.
    Watson PY; Fedor MJ
    Nat Struct Mol Biol; 2011 Mar; 18(3):359-63. PubMed ID: 21317896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ménage à trois: post-transcriptional control of the key enzyme for cell envelope synthesis by a base-pairing small RNA, an RNase adaptor protein, and a small RNA mimic.
    Göpel Y; Khan MA; Görke B
    RNA Biol; 2014; 11(5):433-42. PubMed ID: 24667238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.