These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25254651)

  • 1. Creating sub-50 nm nanofluidic junctions in a PDMS microchip via self-assembly process of colloidal silica beads for electrokinetic concentration of biomolecules.
    Syed A; Mangano L; Mao P; Han J; Song YA
    Lab Chip; 2014 Dec; 14(23):4455-60. PubMed ID: 25254651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.
    Wei X; Syed A; Mao P; Han J; Song YA
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications.
    Kim SJ; Han J
    Anal Chem; 2008 May; 80(9):3507-11. PubMed ID: 18380489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low auto-fluorescence fabrication methods for plastic nanoslits.
    Yin Z; Qi L; Zou H; Sun L; Xu S
    IET Nanobiotechnol; 2016 Apr; 10(2):75-80. PubMed ID: 27074857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic mixing system for single-molecule measurements.
    Pfeil SH; Wickersham CE; Hoffmann A; Lipman EA
    Rev Sci Instrum; 2009 May; 80(5):055105. PubMed ID: 19485532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual walls in microchannels.
    Xu W; Xue H; Bachman M; Li GP
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2840-3. PubMed ID: 17946533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization.
    Ko SH; Song YA; Kim SJ; Kim M; Han J; Kang KH
    Lab Chip; 2012 Nov; 12(21):4472-82. PubMed ID: 22907316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules.
    Wu ZY; Li CY; Guo XL; Li B; Zhang DW; Xu Y; Fang F
    Lab Chip; 2012 Sep; 12(18):3408-12. PubMed ID: 22785610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotactic behavior of catalytic motors in microfluidic channels.
    Baraban L; Harazim SM; Sanchez S; Schmidt OG
    Angew Chem Int Ed Engl; 2013 May; 52(21):5552-6. PubMed ID: 23616282
    [No Abstract]   [Full Text] [Related]  

  • 11. Fabrication of silica/PDMS hybrid nanoparticles by a novel solvent adjustment route.
    Jia X; Zhang J; Song G; Zhu JJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):252-7. PubMed ID: 22523973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.
    Liu V; Song YA; Han J
    Lab Chip; 2010 Jun; 10(11):1485-90. PubMed ID: 20480116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of ground aerogel particles as chromatographic stationary phase into microchip.
    Gaspar A; Nagy A; Lazar I
    J Chromatogr A; 2011 Feb; 1218(7):1011-5. PubMed ID: 21227431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration.
    Hu YL; Wang C; Wu ZQ; Xu JJ; Chen HY; Xia XH
    Electrophoresis; 2011 Nov; 32(23):3424-30. PubMed ID: 22057434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.
    Liang R; Hu P; Gan G; Qiu J
    Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes.
    Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L
    Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays.
    Liu Y; Yang D; Yu T; Jiang X
    Electrophoresis; 2009 Sep; 30(18):3269-75. PubMed ID: 19722208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown.
    Lee JH; Chung S; Kim SJ; Han J
    Anal Chem; 2007 Sep; 79(17):6868-73. PubMed ID: 17628080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prototyping of X-ray microdiffraction compatible continuous microflow foils.
    Dootz R; Evans H; Köster S; Pfohl T
    Small; 2007 Jan; 3(1):96-100. PubMed ID: 17294477
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.