These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25254942)

  • 1. Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe-Cu steel characterized by atom-probe tomography.
    Kolli RP; Seidman DN
    Microsc Microanal; 2014 Dec; 20(6):1727-39. PubMed ID: 25254942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel.
    Kolli RP; Seidman DN
    Microsc Microanal; 2007 Aug; 13(4):272-84. PubMed ID: 17637076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures.
    Wang Z; Fang X; Li H; Liu W
    Microsc Microanal; 2017 Apr; 23(2):340-349. PubMed ID: 28300016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Cu on Nanoscale Precipitation Evolution and Mechanical Properties of a Fe-NiAl Alloy.
    Shen Q; Chen H; Liu W
    Microsc Microanal; 2017 Apr; 23(2):350-359. PubMed ID: 28320490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons.
    Cazottes S; Danoix F; Fnidiki A; Lemarchand D; Baricco M
    Ultramicroscopy; 2009 Apr; 109(5):625-30. PubMed ID: 19168287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.
    Morley A; Sha G; Hirosawa S; Cerezo A; Smith GD
    Ultramicroscopy; 2009 Apr; 109(5):535-40. PubMed ID: 19028011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Co on Mechanical Properties and Precipitates in a Novel Secondary-Hardening Steel with Duplex Strengthening of M
    Geng R; Han S; Pang X; Yuan X; Liu Y; Li Y; Wang C
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined 3D-atomic/nanoscale comprehension and
    Ghosh S; Rakha K; Aravindh Sasikala Devi A; Reza S; Pallaspuro S; Somani M; Huttula M; Kömi J
    Nanoscale; 2023 Jun; 15(23):10004-10016. PubMed ID: 37232217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting Temporal Evolution of Cu-Rich Precipitates in Fe-Cu Alloy: Correlative Small Angle Neutron Scattering and Atom-Probe Tomography Studies.
    Ahlawat S; Sarkar SK; Sen D; Biswas A
    Microsc Microanal; 2019 Aug; 25(4):840-848. PubMed ID: 31046856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the Chemical Compositions of Fine titanium Carbide and Niobium Carbide Precipitates in Isothermally Aged Ferritic Steel by Atom Probe Tomography Analysis.
    Kobayashi Y; Takahashi J; Kawakami K; Hono K
    Microsc Microanal; 2021 Feb; 27(1):1-11. PubMed ID: 33280630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds.
    Styman PD; Hyde JM; Wilford K; Parfitt D; Riddle N; Smith GD
    Ultramicroscopy; 2015 Dec; 159 Pt 2():292-8. PubMed ID: 26051655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.
    Mulholland MD; Seidman DN
    Microsc Microanal; 2011 Dec; 17(6):950-62. PubMed ID: 22030271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled nano Cu precipitation through age treatment: A method to enhance the biodegradation, mechanical, antimicrobial properties and biocompatibility of Fe-20Mn-3Cu alloys.
    Mandal S; Kishore AV; Mandal S; Bhar B; Mandal BB; Nandi SK; Roy M
    Acta Biomater; 2023 Sep; 168():650-669. PubMed ID: 37451660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.
    Thuvander M; Andersson M; Stiller K
    Ultramicroscopy; 2013 Sep; 132():265-70. PubMed ID: 23234833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbides and possible hydrogen irreversible trapping sites in ultrahigh strength round steel.
    Cheng XY; Li H; Cheng XB
    Micron; 2017 Dec; 103():22-28. PubMed ID: 28942370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of predominance of cementite among iron carbides in steel at elevated temperature.
    Fang CM; Sluiter MH; van Huis MA; Ande CK; Zandbergen HW
    Phys Rev Lett; 2010 Jul; 105(5):055503. PubMed ID: 20867931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Interface Structures of M
    Ding Z; Liang B; Xu Z; Dong L
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19235-19242. PubMed ID: 32223209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and stability of hcp iron carbide precipitates: A first-principles study.
    Fang CM; van Huis MA
    Heliyon; 2017 Sep; 3(9):e00408. PubMed ID: 28971151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mn promotes the rate of nucleation and growth of precipitates by increasing Frenkel pairs in Fe-Cu based alloys.
    Li T; Xie Y; Wang X; Shen Q; Li J; Guo H; Xu J; Liu W
    RSC Adv; 2019 Jun; 9(34):19620-19629. PubMed ID: 35519409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ heating TEM observations on carbide formation and α-Fe recrystallization in twinned martensite.
    Liu X; Man TH; Yin J; Lu X; Guo SQ; Ohmura T; Ping DH
    Sci Rep; 2018 Sep; 8(1):14454. PubMed ID: 30262915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.