BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25255211)

  • 1. Kinetic analysis of human PrimPol DNA polymerase activity reveals a generally error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-oxo-2'-deoxyguanosine.
    Zafar MK; Ketkar A; Lodeiro MF; Cameron CE; Eoff RL
    Biochemistry; 2014 Oct; 53(41):6584-94. PubMed ID: 25255211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The invariant glutamate of human PrimPol DxE motif is critical for its Mn
    Calvo PA; Sastre-Moreno G; Perpiñá C; Guerra S; Martínez-Jiménez MI; Blanco L
    DNA Repair (Amst); 2019 May; 77():65-75. PubMed ID: 30889508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant impact of divalent metal ions on the fidelity, sugar selectivity, and drug incorporation efficiency of human PrimPol.
    Tokarsky EJ; Wallenmeyer PC; Phi KK; Suo Z
    DNA Repair (Amst); 2017 Jan; 49():51-59. PubMed ID: 27989484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translesion Synthesis across the
    Boldinova EO; Ghodke PP; Sudhakar S; Mishra VK; Manukyan AA; Miropolskaya N; Pradeepkumar PI; Makarova AV
    ACS Chem Biol; 2022 Nov; 17(11):3238-3250. PubMed ID: 36318733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol.
    Boldinova EO; Stojkovič G; Khairullin R; Wanrooij S; Makarova AV
    PLoS One; 2017; 12(9):e0184489. PubMed ID: 28902865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro lesion bypass by human PrimPol.
    Makarova AV; Boldinova EO; Belousova EA; Lavrik OI
    DNA Repair (Amst); 2018 Oct; 70():18-24. PubMed ID: 30098578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa.
    Maddukuri L; Ketkar A; Eddy S; Zafar MK; Eoff RL
    Nucleic Acids Res; 2014 Oct; 42(19):12027-40. PubMed ID: 25294835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative solutions and new scenarios for translesion DNA synthesis by human PrimPol.
    Martínez-Jiménez MI; García-Gómez S; Bebenek K; Sastre-Moreno G; Calvo PA; Díaz-Talavera A; Kunkel TA; Blanco L
    DNA Repair (Amst); 2015 May; 29():127-38. PubMed ID: 25746449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities.
    Guilliam TA; Bailey LJ; Brissett NC; Doherty AJ
    Nucleic Acids Res; 2016 Apr; 44(7):3317-29. PubMed ID: 26984527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divalent Cations Alter the Rate-Limiting Step of PrimPol-Catalyzed DNA Elongation.
    Xu W; Zhao W; Morehouse N; Tree MO; Zhao L
    J Mol Biol; 2019 Feb; 431(4):673-686. PubMed ID: 30633872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase.
    Rechkoblit O; Johnson RE; Gupta YK; Prakash L; Prakash S; Aggarwal AK
    Nat Commun; 2021 Jun; 12(1):4020. PubMed ID: 34188055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translesion synthesis by human DNA polymerase kappa on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene).
    Suzuki N; Ohashi E; Kolbanovskiy A; Geacintov NE; Grollman AP; Ohmori H; Shibutani S
    Biochemistry; 2002 May; 41(19):6100-6. PubMed ID: 11994005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human PrimPol activity is enhanced by RPA.
    Martínez-Jiménez MI; Lahera A; Blanco L
    Sci Rep; 2017 Apr; 7(1):783. PubMed ID: 28396594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Action-at-a-distance" mutagenesis. 8-oxo-7, 8-dihydro-2'-deoxyguanosine causes base substitution errors at neighboring template sites when copied by DNA polymerase beta.
    Efrati E; Tocco G; Eritja R; Wilson SH; Goodman MF
    J Biol Chem; 1999 May; 274(22):15920-6. PubMed ID: 10336498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WRNIP1 Controls the Amount of PrimPol.
    Yoshimura A; Oikawa M; Jinbo H; Hasegawa Y; Enomoto T; Seki M
    Biol Pharm Bull; 2019; 42(5):764-769. PubMed ID: 31061318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins.
    Guilliam TA; Jozwiakowski SK; Ehlinger A; Barnes RP; Rudd SG; Bailey LJ; Skehel JM; Eckert KA; Chazin WJ; Doherty AJ
    Nucleic Acids Res; 2015 Jan; 43(2):1056-68. PubMed ID: 25550423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.
    Kim J; Song I; Jo A; Shin JH; Cho H; Eoff RL; Guengerich FP; Choi JY
    Chem Res Toxicol; 2014 Oct; 27(10):1837-52. PubMed ID: 25162224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strand Displacement Activity of PrimPol.
    Boldinova EO; Belousova EA; Gagarinskaya DI; Maltseva EA; Khodyreva SN; Lavrik OI; Makarova AV
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33261049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRIMPOL ready, set, reprime!
    Tirman S; Cybulla E; Quinet A; Meroni A; Vindigni A
    Crit Rev Biochem Mol Biol; 2021 Feb; 56(1):17-30. PubMed ID: 33179522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylalanine 171 is a molecular brake for translesion synthesis across benzo[a]pyrene-guanine adducts by human DNA polymerase kappa.
    Sassa A; Niimi N; Fujimoto H; Katafuchi A; Grúz P; Yasui M; Gupta RC; Johnson F; Ohta T; Nohmi T
    Mutat Res; 2011 Jan; 718(1-2):10-7. PubMed ID: 21078407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.