These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 25255228)
1. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. Bergner BJ; Schürmann A; Peppler K; Garsuch A; Janek J J Am Chem Soc; 2014 Oct; 136(42):15054-64. PubMed ID: 25255228 [TBL] [Abstract][Full Text] [Related]
2. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li Feng N; Mu X; Zhang X; He P; Zhou H ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362 [TBL] [Abstract][Full Text] [Related]
3. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
4. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247 [TBL] [Abstract][Full Text] [Related]
5. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
6. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries. Liang Z; Lu YC J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413 [TBL] [Abstract][Full Text] [Related]
7. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895 [TBL] [Abstract][Full Text] [Related]
8. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control. Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000 [TBL] [Abstract][Full Text] [Related]
9. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery. Feng N; He P; Zhou H ChemSusChem; 2015 Feb; 8(4):600-2. PubMed ID: 25641874 [TBL] [Abstract][Full Text] [Related]
10. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. Lu YC; Shao-Horn Y J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218 [TBL] [Abstract][Full Text] [Related]
11. LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li-O Yoo E; Zhou H ACS Appl Mater Interfaces; 2020 Apr; 12(16):18490-18495. PubMed ID: 32212676 [TBL] [Abstract][Full Text] [Related]
12. Highly Efficient Br Xin X; Ito K; Kubo Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):25976-25984. PubMed ID: 28714666 [TBL] [Abstract][Full Text] [Related]
13. Rechargeable LI2O2 electrode for lithium batteries. Ogasawara T; Débart A; Holzapfel M; Novák P; Bruce PG J Am Chem Soc; 2006 Feb; 128(4):1390-3. PubMed ID: 16433559 [TBL] [Abstract][Full Text] [Related]
14. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li-Air Batteries. Kavalsky L; Mukherjee S; Singh CV ACS Appl Mater Interfaces; 2019 Jan; 11(1):499-510. PubMed ID: 30521304 [TBL] [Abstract][Full Text] [Related]
15. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries. McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312 [TBL] [Abstract][Full Text] [Related]
17. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides. Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578 [TBL] [Abstract][Full Text] [Related]
18. Operando observation of the gold-electrolyte interface in Li-O2 batteries. Gittleson FS; Ryu WH; Taylor AD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060 [TBL] [Abstract][Full Text] [Related]
19. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries. García JM; Horn HW; Rice JE J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250 [TBL] [Abstract][Full Text] [Related]
20. Realizing Formation and Decomposition of Li Song LN; Zou LC; Wang XX; Luo N; Xu JJ; Yu JH iScience; 2019 Apr; 14():36-46. PubMed ID: 30925409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]