These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25255329)

  • 21. Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes.
    Jang Y; Kwon SJ; Shin J; Jeong H; Hwang WT; Kim J; Koo J; Ko TY; Ryu S; Wang G; Lee TW; Lee T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42043-42049. PubMed ID: 29130304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of doping effects on magnetic properties of the hydrogenated and fluorinated graphene structures by extra charge mimic.
    Wang M; Li CM
    Phys Chem Chem Phys; 2013 Mar; 15(11):3786-92. PubMed ID: 23396450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer.
    Ha TJ; Lee J; Chowdhury SF; Akinwande D; Rossky PJ; Dodabalapur A
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):16-20. PubMed ID: 23252452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocontrolled molecular structural transition and doping in graphene.
    Peimyoo N; Li J; Shang J; Shen X; Qiu C; Xie L; Huang W; Yu T
    ACS Nano; 2012 Oct; 6(10):8878-86. PubMed ID: 22966836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-doped graphene field-effect transistors with enhanced electron mobility and air-stability.
    Xu W; Lim TS; Seo HK; Min SY; Cho H; Park MH; Kim YH; Lee TW
    Small; 2014 May; 10(10):1999-2005. PubMed ID: 24616289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures.
    Hu W; Li Z; Yang J
    J Chem Phys; 2013 Mar; 138(12):124706. PubMed ID: 23556741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exceptional charge transport properties of graphene on germanium.
    Cavallo F; Rojas Delgado R; Kelly MM; Sánchez Pérez JR; Schroeder DP; Xing HG; Eriksson MA; Lagally MG
    ACS Nano; 2014 Oct; 8(10):10237-45. PubMed ID: 25203974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate.
    Christodoulou C; Giannakopoulos A; Ligorio G; Oehzelt M; Timpel M; Niederhausen J; Pasquali L; Giglia A; Parvez K; Müllen K; Beljonne D; Koch N; Nardi MV
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19134-44. PubMed ID: 26280572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly tunable charge transport in layer-by-layer assembled graphene transistors.
    Hwang H; Joo P; Kang MS; Ahn G; Han JT; Kim BS; Cho JH
    ACS Nano; 2012 Mar; 6(3):2432-40. PubMed ID: 22314208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Symmetry induced semimetal-semiconductor transition in doped graphene.
    Sirikumara HI; Putz E; Al-Abboodi M; Jayasekera T
    Sci Rep; 2016 Jan; 6():19115. PubMed ID: 26781061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene.
    Tristant D; Puech P; Gerber IC
    Phys Chem Chem Phys; 2015 Nov; 17(44):30045-51. PubMed ID: 26497888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study.
    Wu M; Cao C; Jiang JZ
    Nanotechnology; 2010 Dec; 21(50):505202. PubMed ID: 21098927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution.
    Sun X; Dai J; Guo Y; Wu C; Hu F; Zhao J; Zeng X; Xie Y
    Nanoscale; 2014 Jul; 6(14):8359-67. PubMed ID: 24934507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable hole doping of graphene for low electrical resistance and high optical transparency.
    Tongay S; Berke K; Lemaitre M; Nasrollahi Z; Tanner DB; Hebard AF; Appleton BR
    Nanotechnology; 2011 Oct; 22(42):425701. PubMed ID: 21934196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong hole-doping and robust resistance-decrease in proton-irradiated graphene.
    Lee C; Kim J; Kim S; Chang YJ; Kim KS; Hong B; Choi EJ
    Sci Rep; 2016 Feb; 6():21311. PubMed ID: 26888197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mass Inversion at the Lifshitz Transition in Monolayer Graphene by Diffusive, High-Density, On-Chip Doping.
    Aygar AM; Durnan O; Molavi B; Bovey SNR; Grüneis A; Szkopek T
    ACS Nano; 2024 Mar; 18(12):9092-9099. PubMed ID: 38479375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Shubnikov-De Haas Oscillation in Nitrogen-Doped Graphene.
    Wu HC; Abid M; Wu YC; Coileáin CÓ; Syrlybekov A; Han JF; Heng CL; Liu H; Abid M; Shvets I
    ACS Nano; 2015 Jul; 9(7):7207-14. PubMed ID: 26061979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces.
    Cervenka J; Budi A; Dontschuk N; Stacey A; Tadich A; Rietwyk KJ; Schenk A; Edmonds MT; Yin Y; Medhekar N; Kalbac M; Pakes CI
    Nanoscale; 2015 Jan; 7(4):1471-8. PubMed ID: 25502349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition.
    Wei D; Peng L; Li M; Mao H; Niu T; Han C; Chen W; Wee AT
    ACS Nano; 2015 Jan; 9(1):164-71. PubMed ID: 25581685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.