These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25255367)

  • 1. Development of DNA confirmatory and high-risk diagnostic testing for newborns using targeted next-generation DNA sequencing.
    Bhattacharjee A; Sokolsky T; Wyman SK; Reese MG; Puffenberger E; Strauss K; Morton H; Parad RB; Naylor EW
    Genet Med; 2015 May; 17(5):337-47. PubMed ID: 25255367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Integrated Newborn Screening Workflow Can Provide a Shortcut to Differential Diagnosis and Confirmation of Inherited Metabolic Diseases.
    Ko JM; Park KS; Kang Y; Nam SH; Kim Y; Park I; Chae HW; Lee SM; Lee KA; Kim JW
    Yonsei Med J; 2018 Jul; 59(5):652-661. PubMed ID: 29869463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency.
    Strand J; Gul KA; Erichsen HC; Lundman E; Berge MC; Trømborg AK; Sørgjerd LK; Ytre-Arne M; Hogner S; Halsne R; Gaup HJ; Osnes LT; Kro GAB; Sorte HS; Mørkrid L; Rowe AD; Tangeraas T; Jørgensen JV; Alme C; Bjørndalen TEH; Rønnestad AE; Lang AM; Rootwelt T; Buechner J; Øverland T; Abrahamsen TG; Pettersen RD; Stray-Pedersen A
    Front Immunol; 2020; 11():1417. PubMed ID: 32754152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-Generation Molecular Testing of Newborn Dried Blood Spots for Cystic Fibrosis.
    Lefterova MI; Shen P; Odegaard JI; Fung E; Chiang T; Peng G; Davis RW; Wang W; Kharrazi M; Schrijver I; Scharfe C
    J Mol Diagn; 2016 Mar; 18(2):267-82. PubMed ID: 26847993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
    Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM
    Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods and feasibility study for exome sequencing as a universal second-tier test in newborn screening.
    Ruiz-Schultz N; Sant D; Norcross S; Dansithong W; Hart K; Asay B; Little J; Chung K; Oakeson KF; Young EL; Eilbeck K; Rohrwasser A
    Genet Med; 2021 Apr; 23(4):767-776. PubMed ID: 33442025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions.
    Rajan-Babu IS; Peng JJ; Chiu R; ; ; Li C; Mohajeri A; Dolzhenko E; Eberle MA; Birol I; Friedman JM
    Genome Med; 2021 Aug; 13(1):126. PubMed ID: 34372915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates.
    Huang X; Wu D; Zhu L; Wang W; Yang R; Yang J; He Q; Zhu B; You Y; Xiao R; Zhao Z
    Orphanet J Rare Dis; 2022 Feb; 17(1):66. PubMed ID: 35193651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit.
    Daoud H; Luco SM; Li R; Bareke E; Beaulieu C; Jarinova O; Carson N; Nikkel SM; Graham GE; Richer J; Armour C; Bulman DE; Chakraborty P; Geraghty M; Lines MA; Lacaze-Masmonteil T; Majewski J; Boycott KM; Dyment DA
    CMAJ; 2016 Aug; 188(11):E254-E260. PubMed ID: 27241786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Value of genetic analysis for confirming inborn errors of metabolism detected through the Spanish neonatal screening program.
    Navarrete R; Leal F; Vega AI; Morais-López A; Garcia-Silva MT; Martín-Hernández E; Quijada-Fraile P; Bergua A; Vives I; García-Jiménez I; Yahyaoui R; Pedrón-Giner C; Belanger-Quintana A; Stanescu S; Cañedo E; García-Campos O; Bueno-Delgado M; Delgado-Pecellín C; Vitoria I; Rausell MD; Balmaseda E; Couce ML; Desviat LR; Merinero B; Rodríguez-Pombo P; Ugarte M; Pérez-Cerdá C; Pérez B
    Eur J Hum Genet; 2019 Apr; 27(4):556-562. PubMed ID: 30626930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis.
    Fleige T; Burggraf S; Czibere L; Häring J; Glück B; Keitel LM; Landt O; Harms E; Hohenfellner K; Durner J; Röschinger W; Becker M
    Eur J Hum Genet; 2020 Feb; 28(2):193-201. PubMed ID: 31570786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Next-Generation Sequencing Pipeline Outperforms a Combined Approach Using Sanger Sequencing and Multiplex Ligation-Dependent Probe Amplification in Targeted Gene Panel Analysis.
    Schenkel LC; Kerkhof J; Stuart A; Reilly J; Eng B; Woodside C; Levstik A; Howlett CJ; Rupar AC; Knoll JHM; Ainsworth P; Waye JS; Sadikovic B
    J Mol Diagn; 2016 Sep; 18(5):657-667. PubMed ID: 27376475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels.
    LaDuca H; Farwell KD; Vuong H; Lu HM; Mu W; Shahmirzadi L; Tang S; Chen J; Bhide S; Chao EC
    PLoS One; 2017; 12(2):e0170843. PubMed ID: 28152038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases.
    Mansilla MA; Sompallae RR; Nishimura CJ; Kwitek AE; Kimble MJ; Freese ME; Campbell CA; Smith RJ; Thomas CP
    Nephrol Dial Transplant; 2021 Jan; 36(2):295-305. PubMed ID: 31738409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a next-generation-sequencing cancer panel for use in the clinical laboratory.
    Simen BB; Yin L; Goswami CP; Davis KO; Bajaj R; Gong JZ; Peiper SC; Johnson ES; Wang ZX
    Arch Pathol Lab Med; 2015 Apr; 139(4):508-17. PubMed ID: 25356985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A targeted gene capture next-generation sequencing panel for genetic screening of newborns.
    Peng Q; Liu G; Zhu P; Wu C; He X; Li W; Rao C; Li S; Lu X
    J Pak Med Assoc; 2020 Oct; 70(10):1789-1794. PubMed ID: 33159754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost exon capture method suitable for large-scale screening of genetic deafness by the massively-parallel sequencing approach.
    Tang W; Qian D; Ahmad S; Mattox D; Todd NW; Han H; Huang S; Li Y; Wang Y; Li H; Lin X
    Genet Test Mol Biomarkers; 2012 Jun; 16(6):536-42. PubMed ID: 22480152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical validation of targeted next-generation sequencing for inherited disorders.
    Yohe S; Hauge A; Bunjer K; Kemmer T; Bower M; Schomaker M; Onsongo G; Wilson J; Erdmann J; Zhou Y; Deshpande A; Spears MD; Beckman K; Silverstein KA; Thyagarajan B
    Arch Pathol Lab Med; 2015 Feb; 139(2):204-10. PubMed ID: 25611102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Targeted High-Throughput Next-Generation Sequencing Panel for Clinical Screening of Mutations, Gene Amplifications, and Fusions in Solid Tumors.
    Luthra R; Patel KP; Routbort MJ; Broaddus RR; Yau J; Simien C; Chen W; Hatfield DZ; Medeiros LJ; Singh RR
    J Mol Diagn; 2017 Mar; 19(2):255-264. PubMed ID: 28017569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next Generation Sequencing Based Multiplex Long-Range PCR for Routine Genotyping of Autoinflammatory Disorders.
    Guzel F; Romano M; Keles E; Piskin D; Ozen S; Poyrazoglu H; Kasapcopur O; Demirkaya E
    Front Immunol; 2021; 12():666273. PubMed ID: 34177904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.