BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25255735)

  • 41. A gene network that coordinates preplacodal competence and neural crest specification in zebrafish.
    Bhat N; Kwon HJ; Riley BB
    Dev Biol; 2013 Jan; 373(1):107-17. PubMed ID: 23078916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The posterior neural plate in axolotl gives rise to neural tube or turns anteriorly to form somites of the tail and posterior trunk.
    Taniguchi Y; Kurth T; Weiche S; Reichelt S; Tazaki A; Perike S; Kappert V; Epperlein HH
    Dev Biol; 2017 Feb; 422(2):155-170. PubMed ID: 28017643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of zebrafish pitx3 expression in the primordia of the pituitary, lens, olfactory epithelium and cranial ganglia by hedgehog and nodal signaling.
    Zilinski CA; Shah R; Lane ME; Jamrich M
    Genesis; 2005 Jan; 41(1):33-40. PubMed ID: 15645439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo.
    Xu H; Dude CM; Baker CV
    Dev Biol; 2008 May; 317(1):174-86. PubMed ID: 18367162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish.
    McCarroll MN; Nechiporuk AV
    PLoS One; 2013; 8(12):e85087. PubMed ID: 24358375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of cranial placodes: insights from studies in chick.
    Jidigam VK; Gunhaga L
    Dev Growth Differ; 2013 Jan; 55(1):79-95. PubMed ID: 23278869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retroviral lineage analysis reveals dual contribution from ectodermal placodes and neural crest cells to avian olfactory sensory and GnRH neurons.
    Koontz A; Urrutia HA; Bronner ME
    Nat Sci (Weinh); 2022 Jul; 2(3):. PubMed ID: 36311264
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of anterior neurectoderm specification and differentiation by BMP signaling in ascidians.
    Roure A; Chowdhury R; Darras S
    Development; 2023 May; 150(10):. PubMed ID: 37213081
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system.
    Denham M; Hasegawa K; Menheniott T; Rollo B; Zhang D; Hough S; Alshawaf A; Febbraro F; Ighaniyan S; Leung J; Elliott DA; Newgreen DF; Pera MF; Dottori M
    Stem Cells; 2015 Jun; 33(6):1759-70. PubMed ID: 25753817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish.
    Saxena A; Peng BN; Bronner ME
    Elife; 2013 Mar; 2():e00336. PubMed ID: 23539289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation.
    Hinaux H; Devos L; Blin M; Elipot Y; Bibliowicz J; Alié A; Rétaux S
    Development; 2016 Dec; 143(23):4521-4532. PubMed ID: 27899509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity.
    Esterberg R; Fritz A
    Dev Biol; 2009 Jan; 325(1):189-99. PubMed ID: 19007769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Making senses development of vertebrate cranial placodes.
    Schlosser G
    Int Rev Cell Mol Biol; 2010; 283():129-234. PubMed ID: 20801420
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Olfactory structures in staged human embryos.
    Müller F; O'Rahilly R
    Cells Tissues Organs; 2004; 178(2):93-116. PubMed ID: 15604533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula.
    Kaji T; Artinger KB
    Dev Biol; 2004 Dec; 276(2):523-40. PubMed ID: 15581883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prickle1 is required for EMT and migration of zebrafish cranial neural crest.
    Ahsan K; Singh N; Rocha M; Huang C; Prince VE
    Dev Biol; 2019 Apr; 448(1):16-35. PubMed ID: 30721665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights Into the Early Gene Regulatory Network Controlling Neural Crest and Placode Fate Choices at the Neural Border.
    Seal S; Monsoro-Burq AH
    Front Physiol; 2020; 11():608812. PubMed ID: 33324244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.
    Wu MY; Ramel MC; Howell M; Hill CS
    PLoS Biol; 2011 Feb; 9(2):e1000593. PubMed ID: 21358802
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.