These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 25255857)

  • 1. (133)Cs NMR and molecular dynamics simulation on bilayers of Cs(+) ion binding to aggregates of fatty acid soap at high pH.
    Xu W; Zhang H; Dong S; Hao J
    Langmuir; 2014 Oct; 30(39):11567-73. PubMed ID: 25255857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.
    Xu W; Zhang H; Zhong Y; Jiang L; Xu M; Zhu X; Hao J
    J Phys Chem B; 2015 Aug; 119(33):10760-7. PubMed ID: 26237503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.
    Xu W; Song A; Dong S; Chen J; Hao J
    Langmuir; 2013 Oct; 29(40):12380-8. PubMed ID: 24028317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayers and wormlike micelles at high pH in fatty acid soap systems.
    Xu W; Liu H; Song A; Hao J
    J Colloid Interface Sci; 2016 Mar; 465():304-10. PubMed ID: 26688122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembly and Rheological Properties of a Pseudogemini Surfactant Formed in a Salt-Free Catanionic Surfactant Mixture in Water.
    Li Y; Li H; Chai J; Chen M; Yang Q; Hao J
    Langmuir; 2015 Oct; 31(41):11209-19. PubMed ID: 26406939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO2-Controllable Foaming and Emulsification Properties of the Stearic Acid Soap Systems.
    Xu W; Gu H; Zhu X; Zhong Y; Jiang L; Xu M; Song A; Hao J
    Langmuir; 2015 Jun; 31(21):5758-66. PubMed ID: 25961406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating fatty acids inserted into magnetically aligned phospholipid bilayers using EPR and solid-state NMR spectroscopy.
    Nusair NA; Tiburu EK; Dave PC; Lorigan GA
    J Magn Reson; 2004 Jun; 168(2):228-37. PubMed ID: 15140432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of sample pH on the conformational backbone dynamics of a pseudotripeptide (H-Tyr-Tic psi [CH2-NH]Phe-OH) incorporating a reduced peptide bond: an NMR investigation.
    Carpenter KA; Wilkes BC; Schiller PW
    Biopolymers; 1995 Dec; 36(6):735-49. PubMed ID: 8555421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination.
    Stolowich NJ; Frolov A; Atshaves B; Murphy EJ; Jolly CA; Billheimer JT; Scott AI; Schroeder F
    Biochemistry; 1997 Feb; 36(7):1719-29. PubMed ID: 9048555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: geometries and isotope and solvent effects.
    Tolstoy PM; Schah-Mohammedi P; Smirnov SN; Golubev NS; Denisov GS; Limbach HH
    J Am Chem Soc; 2004 May; 126(17):5621-34. PubMed ID: 15113234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the CHARMM force field for polyunsaturated fatty acid chains.
    Klauda JB; Monje V; Kim T; Im W
    J Phys Chem B; 2012 Aug; 116(31):9424-31. PubMed ID: 22697583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of oleic acid/oleate bilayers: an atomistic model for a ufasome membrane.
    Han S
    Chem Phys Lipids; 2013; 175-176():79-83. PubMed ID: 23994553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid state NMR studies of hydrogen bonding in a citrate synthase inhibitor complex.
    Gu Z; Drueckhammer DG; Kurz L; Liu K; Martin DP; McDermott A
    Biochemistry; 1999 Jun; 38(25):8022-31. PubMed ID: 10387046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A drag reducing surfactant threadlike micelle system with unusual rheological responses to pH.
    Shi H; Ge W; Wang Y; Fang B; Huggins JT; Russell TA; Talmon Y; Hart DJ; Zakin JL
    J Colloid Interface Sci; 2014 Mar; 418():95-102. PubMed ID: 24461823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity.
    Prenner EJ; Lewis RN; Neuman KC; Gruner SM; Kondejewski LH; Hodges RS; McElhaney RN
    Biochemistry; 1997 Jun; 36(25):7906-16. PubMed ID: 9201936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous transformation of lamellar structures from simple to more complex states.
    Dou Y; Long P; Dong S; Hao J
    Langmuir; 2013 Oct; 29(42):12901-8. PubMed ID: 24070426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Globoside as a membrane receptor: a consideration of oligosaccharide communication with the hydrophobic domain.
    Jones DH; Lingwood CA; Barber KR; Grant CW
    Biochemistry; 1997 Jul; 36(28):8539-47. PubMed ID: 9214299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liposome-prilocaine interaction mapping evaluated through STD NMR and molecular dynamics simulations.
    Cabeça LF; Pickholz M; de Paula E; Marsaioli AJ
    J Phys Chem B; 2009 Feb; 113(8):2365-70. PubMed ID: 19183018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V
    Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.