These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25256155)

  • 21. Ocean acidification modulates expression of genes and physiological performance of a marine diatom.
    Li Y; Zhuang S; Wu Y; Ren H; Chen F; Lin X; Wang K; Beardall J; Gao K
    PLoS One; 2017; 12(2):e0170970. PubMed ID: 28192486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photosynthetic architecture differs in coastal and oceanic diatoms.
    Strzepek RF; Harrison PJ
    Nature; 2004 Oct; 431(7009):689-92. PubMed ID: 15470428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosystem II photoinactivation, repair, and protection in marine centric diatoms.
    Wu H; Roy S; Alami M; Green BR; Campbell DA
    Plant Physiol; 2012 Sep; 160(1):464-76. PubMed ID: 22829321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of pH and pCO
    Goldman JA; Bender ML; Morel FM
    Photosynth Res; 2017 Apr; 132(1):83-93. PubMed ID: 28062941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure.
    Yi AX; Leung PT; Leung KM
    Aquat Toxicol; 2014 Sep; 154():48-57. PubMed ID: 24858899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation.
    Heiden JP; Thoms S; Bischof K; Trimborn S
    J Phycol; 2018 Aug; 54(4):505-517. PubMed ID: 29791031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.
    Kübler JE; Dudgeon SR
    PLoS One; 2015; 10(7):e0132806. PubMed ID: 26172263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic energy conversion under extreme conditions--I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms.
    Mock T; Kroon BM
    Phytochemistry; 2002 Sep; 61(1):41-51. PubMed ID: 12165301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Connectivity among Photosystem II centers in phytoplankters: Patterns and responses.
    Xu K; Grant-Burt JL; Donaher N; Campbell DA
    Biochim Biophys Acta Bioenerg; 2017 Jun; 1858(6):459-474. PubMed ID: 28315315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.
    Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS
    Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consequences of photosystem-I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana.
    Lima-Melo Y; Gollan PJ; Tikkanen M; Silveira JAG; Aro EM
    Plant J; 2019 Mar; 97(6):1061-1072. PubMed ID: 30488561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PGRL1 overexpression in Phaeodactylum tricornutum inhibits growth and reduces apparent PSII activity.
    Zhou L; Gao S; Wu S; Han D; Wang H; Gu W; Hu Q; Wang J; Wang G
    Plant J; 2020 Aug; 103(5):1850-1857. PubMed ID: 32526813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of elevated UV-B radiation on photosynthetic electron transport, primary productivity and carbon allocation in estuarine epipelic diatoms.
    Waring J; Underwood GJ; Baker NR
    Plant Cell Environ; 2006 Apr; 29(4):521-34. PubMed ID: 17080604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex.
    Vinyard DJ; Sun JS; Gimpel J; Ananyev GM; Mayfield SP; Charles Dismukes G
    Photosynth Res; 2016 May; 128(2):141-50. PubMed ID: 26687161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrasting effects of copper limitation on the photosynthetic apparatus in two strains of the open ocean diatom Thalassiosira oceanica.
    Hippmann AA; Schuback N; Moon KM; McCrow JP; Allen AE; Foster LJ; Green BR; Maldonado MT
    PLoS One; 2017; 12(8):e0181753. PubMed ID: 28837661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron acquisition and allocation in stramenopile algae.
    Raven JA
    J Exp Bot; 2013 May; 64(8):2119-27. PubMed ID: 23658428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between photosystem II efficiency and quantum yield for CO(2) assimilation is not affected by nitrogen content in apple leaves.
    Cheng L; Fuchigami LH; Breen PJ
    J Exp Bot; 2001 Sep; 52(362):1865-72. PubMed ID: 11520875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.
    Schuback N; Schallenberg C; Duckham C; Maldonado MT; Tortell PD
    PLoS One; 2015; 10(7):e0133235. PubMed ID: 26171963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.