These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 25256209)
41. Target-induced aptamer release strategy based on electrochemical detection of staphylococcal enterotoxin B using GNPs-ZrO2-Chits film. Deng R; Wang L; Yi G; Hua E; Xie G Colloids Surf B Biointerfaces; 2014 Aug; 120():1-7. PubMed ID: 24892561 [TBL] [Abstract][Full Text] [Related]
42. Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide. Thavanathan J; Huang NM; Thong KL Biosens Bioelectron; 2014 May; 55():91-8. PubMed ID: 24368225 [TBL] [Abstract][Full Text] [Related]
43. Tunnelling current recognition through core-satellite gold nanoparticles for ultrasensitive detection of copper ions. Foroushani A; Zhang Y; Li D; Mathesh M; Wang H; Yan F; Barrow CJ; He J; Yang W Chem Commun (Camb); 2015 Feb; 51(14):2921-4. PubMed ID: 25585717 [TBL] [Abstract][Full Text] [Related]
44. A novel route to copper(II) detection using 'click' chemistry-induced aggregation of gold nanoparticles. Hua C; Zhang WH; De Almeida SR; Ciampi S; Gloria D; Liu G; Harper JB; Gooding JJ Analyst; 2012 Jan; 137(1):82-6. PubMed ID: 21975428 [TBL] [Abstract][Full Text] [Related]
45. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Liu L; Xia N; Liu H; Kang X; Liu X; Xue C; He X Biosens Bioelectron; 2014 Mar; 53():399-405. PubMed ID: 24201003 [TBL] [Abstract][Full Text] [Related]
46. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Deng H; Xu Y; Liu Y; Che Z; Guo H; Shan S; Sun Y; Liu X; Huang K; Ma X; Wu Y; Liang XJ Anal Chem; 2012 Feb; 84(3):1253-8. PubMed ID: 22243128 [TBL] [Abstract][Full Text] [Related]
47. Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Li C; Wei L; Liu X; Lei L; Li G Anal Chim Acta; 2014 Jun; 831():60-4. PubMed ID: 24861972 [TBL] [Abstract][Full Text] [Related]
48. Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles. Verdoold R; Gill R; Ungureanu F; Molenaar R; Kooyman RP Biosens Bioelectron; 2011 Sep; 27(1):77-81. PubMed ID: 21752628 [TBL] [Abstract][Full Text] [Related]
49. Label-free detection of amino acids using gold nanoparticles in electrokinetic chromatography-thermal lens microscopy. Kitagawa F; Akimoto Y; Otsuka K J Chromatogr A; 2009 Apr; 1216(14):2943-6. PubMed ID: 18723173 [TBL] [Abstract][Full Text] [Related]
50. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles. Fu Z; Zhou X; Xing D Methods; 2013 Dec; 64(3):260-6. PubMed ID: 23948710 [TBL] [Abstract][Full Text] [Related]
51. An enzyme-free and amplified colorimetric detection strategy: assembly of gold nanoparticles through target-catalytic circuits. Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; Wang K Analyst; 2015 Feb; 140(4):1004-7. PubMed ID: 25562066 [TBL] [Abstract][Full Text] [Related]
52. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe. Li S; Liao L; Wu R; Yang Y; Xu L; Xiao X; Nie C Anal Bioanal Chem; 2015 Nov; 407(29):8911-8. PubMed ID: 26403237 [TBL] [Abstract][Full Text] [Related]
53. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943 [TBL] [Abstract][Full Text] [Related]
54. Electrochemical detection of DNA hybridization based on signal DNA probe modified with Au and apoferritin nanoparticles. Yu F; Li G; Qu B; Cao W Biosens Bioelectron; 2010 Nov; 26(3):1114-7. PubMed ID: 20833018 [TBL] [Abstract][Full Text] [Related]
55. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform. Gao W; Zhang A; Chen Y; Chen Z; Chen Y; Lu F; Chen Z Biosens Bioelectron; 2013 Nov; 49():139-45. PubMed ID: 23732860 [TBL] [Abstract][Full Text] [Related]
56. Rapid label-free visual assay for the detection and quantification of viral RNA using peptide nucleic acid (PNA) and gold nanoparticles (AuNPs). Joshi VG; Chindera K; Singh AK; Sahoo AP; Dighe VD; Thakuria D; Tiwari AK; Kumar S Anal Chim Acta; 2013 Sep; 795():1-7. PubMed ID: 23998531 [TBL] [Abstract][Full Text] [Related]
57. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693 [TBL] [Abstract][Full Text] [Related]
58. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Xie X; Xu W; Liu X Acc Chem Res; 2012 Sep; 45(9):1511-20. PubMed ID: 22786666 [TBL] [Abstract][Full Text] [Related]
59. Ultrasensitive electroanalysis of low-level free microRNAs in blood by maximum signal amplification of catalytic silver deposition using alkaline phosphatase-incorporated gold nanoclusters. Si Y; Sun Z; Zhang N; Qi W; Li S; Chen L; Wang H Anal Chem; 2014 Oct; 86(20):10406-14. PubMed ID: 25242013 [TBL] [Abstract][Full Text] [Related]
60. Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. Su H; Fan H; Ai S; Wu N; Fan H; Bian P; Liu J Talanta; 2011 Sep; 85(3):1338-43. PubMed ID: 21807192 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]