BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 25256467)

  • 1. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.
    Iqbal HM; Kyazze G; Tron T; Keshavarz T
    Carbohydr Polym; 2014 Nov; 113():131-7. PubMed ID: 25256467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Yi X; Haizheng Y; Jia J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():757-67. PubMed ID: 26478369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase from
    Iqbal HMN; Kyazze G; Tron T; Keshavarz T
    Saudi J Biol Sci; 2018 Mar; 25(3):545-550. PubMed ID: 29686517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.
    Ruka DR; Sangwan P; Garvey CJ; Simon GP; Dean KM
    Environ Sci Technol; 2015 Aug; 49(16):9979-86. PubMed ID: 25763925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass.
    Misra SK; Nazhat SN; Valappil SP; Moshrefi-Torbati M; Wood RJ; Roy I; Boccaccini AR
    Biomacromolecules; 2007 Jul; 8(7):2112-9. PubMed ID: 17530893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances.
    Shao W; Wang S; Liu H; Wu J; Zhang R; Min H; Huang M
    Carbohydr Polym; 2016 Mar; 138():166-71. PubMed ID: 26794749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-mechanical properties of the composite made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals.
    Wang B; Li J; Zhang J; Li H; Chen P; Gu Q; Wang Z
    Carbohydr Polym; 2013 Jun; 95(1):100-6. PubMed ID: 23618245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications.
    Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application.
    Iqbal HM; Kyazze G; Locke IC; Tron T; Keshavarz T
    Int J Biol Macromol; 2015 Nov; 81():552-9. PubMed ID: 26314909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique.
    Wang J; Wan Y; Huang Y
    IET Nanobiotechnol; 2012 Jun; 6(2):52-7. PubMed ID: 22559707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties.
    Bianco A; Calderone M; Cacciotti I
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1067-77. PubMed ID: 23827544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecofriendly green biosynthesis and characterization of novel bacteriocin-loaded bacterial cellulose nanofiber from Gluconobacter cerinus HDX-1.
    Du R; Ping W; Song G; Ge J
    Int J Biol Macromol; 2021 Dec; 193(Pt A):693-701. PubMed ID: 34737079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
    Trovatti E; Carvalho AJ; Ribeiro SJ; Gandini A
    Biomacromolecules; 2013 Aug; 14(8):2667-74. PubMed ID: 23782026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.
    Ul-Islam M; Khan T; Park JK
    Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal.
    Lin S; Huang J; Chang PR; Wei S; Xu Y; Zhang Q
    Carbohydr Polym; 2013 Jun; 95(1):91-9. PubMed ID: 23618244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites.
    Quero F; Nogi M; Yano H; Abdulsalami K; Holmes SM; Sakakini BH; Eichhorn SJ
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):321-30. PubMed ID: 20356252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.