These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 25256570)
1. Polypyrrole/Agarose-based electronically conductive and reversibly restorable hydrogel. Hur J; Im K; Kim SW; Kim J; Chung DY; Kim TH; Jo KH; Hahn JH; Bao Z; Hwang S; Park N ACS Nano; 2014 Oct; 8(10):10066-76. PubMed ID: 25256570 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of Self-Healable and Patternable Polypyrrole/Agarose Hybrid Hydrogels for Smart Bioelectrodes. Park N; Chae SC; Kim IT; Hur J J Nanosci Nanotechnol; 2016 Feb; 16(2):1400-4. PubMed ID: 27433594 [TBL] [Abstract][Full Text] [Related]
3. Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability. Zhao L; Li X; Li Y; Wang X; Yang W; Ren J Biomacromolecules; 2021 Mar; 22(3):1273-1281. PubMed ID: 33596651 [TBL] [Abstract][Full Text] [Related]
4. Self-assembly of polypyrrole/chitosan composite hydrogels. Huang H; Wu J; Lin X; Li L; Shang S; Yuen MC; Yan G Carbohydr Polym; 2013 Jun; 95(1):72-6. PubMed ID: 23618241 [TBL] [Abstract][Full Text] [Related]
5. Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface. Luo R; Cao Y; Shi P; Chen CH Small; 2014 Dec; 10(23):4886-94. PubMed ID: 25059988 [TBL] [Abstract][Full Text] [Related]
6. Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor. Ren K; Cheng Y; Huang C; Chen R; Wang Z; Wei J J Mater Chem B; 2019 Sep; 7(37):5704-5712. PubMed ID: 31482926 [TBL] [Abstract][Full Text] [Related]
7. Facile One-Pot Preparation of Polypyrrole-Incorporated Conductive Hydrogels for Human Motion Sensing. Zhao Z; Liu J; Lv J; Liu B; Li N; Zhang H Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275724 [TBL] [Abstract][Full Text] [Related]
8. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Shi Z; Gao H; Feng J; Ding B; Cao X; Kuga S; Wang Y; Zhang L; Cai J Angew Chem Int Ed Engl; 2014 May; 53(21):5380-4. PubMed ID: 24711342 [TBL] [Abstract][Full Text] [Related]
9. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523 [TBL] [Abstract][Full Text] [Related]
10. Polypyrrole-doped conductive self-healing multifunctional composite hydrogels with a dual crosslinked network. Wang X; Li X; Zhao L; Li M; Li Y; Yang W; Ren J Soft Matter; 2021 Sep; 17(36):8363-8372. PubMed ID: 34550157 [TBL] [Abstract][Full Text] [Related]
11. Self-gelling electroactive hydrogels based on chitosan-aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Bagheri B; Zarrintaj P; Surwase SS; Baheiraei N; Saeb MR; Mozafari M; Kim YC; Park OO Colloids Surf B Biointerfaces; 2019 Dec; 184():110549. PubMed ID: 31610417 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. Zhang W; Wen J; Yang J; Li M; Peng F; Ma M; Bian J Int J Biol Macromol; 2022 Dec; 223(Pt A):1-10. PubMed ID: 36336151 [TBL] [Abstract][Full Text] [Related]
13. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors. Li Y; Liu X; Gong Q; Xia Z; Yang Y; Chen C; Qian C Int J Biol Macromol; 2021 Mar; 172():41-54. PubMed ID: 33444652 [TBL] [Abstract][Full Text] [Related]
14. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers. Nada AA; Eckstein Andicsová A; Mosnáček J Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055029 [TBL] [Abstract][Full Text] [Related]
15. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes. Lee JW; Serna F; Schmidt CE Langmuir; 2006 Nov; 22(24):9816-9. PubMed ID: 17106966 [TBL] [Abstract][Full Text] [Related]
16. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Feig VR; Tran H; Lee M; Bao Z Nat Commun; 2018 Jul; 9(1):2740. PubMed ID: 30013027 [TBL] [Abstract][Full Text] [Related]
17. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Sasaki M; Karikkineth BC; Nagamine K; Kaji H; Torimitsu K; Nishizawa M Adv Healthc Mater; 2014 Nov; 3(11):1919-27. PubMed ID: 24912988 [TBL] [Abstract][Full Text] [Related]
19. Hydrogel-mediated direct patterning of conducting polymer films with multiple surface chemistries. Park S; Yang G; Madduri N; Abidian MR; Majd S Adv Mater; 2014 May; 26(18):2782-7. PubMed ID: 24623531 [TBL] [Abstract][Full Text] [Related]
20. A Gelatin Hydrogel-Containing Nano-Organic PEI⁻Ppy with a Photothermal Responsive Effect for Tissue Engineering Applications. Satapathy MK; Nyambat B; Chiang CW; Chen CH; Wong PC; Ho PH; Jheng PR; Burnouf T; Tseng CL; Chuang EY Molecules; 2018 May; 23(6):. PubMed ID: 29795044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]