These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25256941)

  • 1. Protein-ligand structure guided by backbone and side-chain proton chemical shift perturbations.
    Aguirre C; ten Brink T; Cala O; Guichou JF; Krimm I
    J Biomol NMR; 2014 Nov; 60(2-3):147-56. PubMed ID: 25256941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of protein-ligand docking with simulated chemical shift perturbations.
    Ten Brink T; Aguirre C; Exner TE; Krimm I
    J Chem Inf Model; 2015 Feb; 55(2):275-83. PubMed ID: 25357133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing binding modes of analogous fragments using NMR in fragment-based drug design: application to PRDX5.
    Aguirre C; ten Brink T; Guichou JF; Cala O; Krimm I
    PLoS One; 2014; 9(7):e102300. PubMed ID: 25025339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D; Gohlke H
    J Chem Inf Model; 2009 Oct; 49(10):2260-71. PubMed ID: 19795907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of fragment molecules that bind the human peroxiredoxin 5 active site.
    Barelier S; Linard D; Pons J; Clippe A; Knoops B; Lancelin JM; Krimm I
    PLoS One; 2010 Mar; 5(3):e9744. PubMed ID: 20305821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BcL-xL conformational changes upon fragment binding revealed by NMR.
    Aguirre C; Ten Brink T; Walker O; Guillière F; Davesne D; Krimm I
    PLoS One; 2013; 8(5):e64400. PubMed ID: 23717610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.
    Liu J; Gao J; Li F; Ma R; Wei Q; Wang A; Wu J; Ruan K
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3061-3070. PubMed ID: 27721047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid protein-ligand costructures using chemical shift perturbations.
    Stark J; Powers R
    J Am Chem Soc; 2008 Jan; 130(2):535-45. PubMed ID: 18088118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR Fragment-Based Screening against Tandem RNA Recognition Motifs of TDP-43.
    Nshogoza G; Liu Y; Gao J; Liu M; Moududee SA; Ma R; Li F; Zhang J; Wu J; Shi Y; Ruan K
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31262091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Ligand-Induced Protein Chemical Shift Perturbations To Determine Protein-Ligand Structures.
    Yu Z; Li P; Merz KM
    Biochemistry; 2017 May; 56(18):2349-2362. PubMed ID: 28406291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of the binding site structure of the cellular retinol-binding protein (CRBP) by ligand NMR chemical shift perturbations.
    Wang B; Merz KM
    J Am Chem Soc; 2005 Apr; 127(15):5310-1. PubMed ID: 15826155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of side-chain proton resonances of fully protonated biosolids in nano-litre volumes by magic angle spinning solid-state NMR.
    Tolchard J; Pandey MK; Berbon M; Noubhani A; Saupe SJ; Nishiyama Y; Habenstein B; Loquet A
    J Biomol NMR; 2018 Mar; 70(3):177-185. PubMed ID: 29502224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.
    Vasa SK; Rovó P; Giller K; Becker S; Linser R
    Phys Chem Chem Phys; 2016 Mar; 18(12):8359-63. PubMed ID: 26686237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-the-Fly Integration of Data from a Spin-Diffusion-Based NMR Experiment into Protein-Ligand Docking.
    Onila I; ten Brink T; Fredriksson K; Codutti L; Mazur A; Griesinger C; Carlomagno T; Exner TE
    J Chem Inf Model; 2015 Sep; 55(9):1962-72. PubMed ID: 26226383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How much NMR data is required to determine a protein-ligand complex structure?
    Schieborr U; Vogtherr M; Elshorst B; Betz M; Grimme S; Pescatore B; Langer T; Saxena K; Schwalbe H
    Chembiochem; 2005 Oct; 6(10):1891-8. PubMed ID: 16013076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of Probing Protein-Ligand Interactions Using NMR.
    Aguirre C; Cala O; Krimm I
    Curr Protoc Protein Sci; 2015 Aug; 81():17.18.1-17.18.24. PubMed ID: 26237672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins.
    Asami S; Reif B
    J Biomol NMR; 2012 Jan; 52(1):31-9. PubMed ID: 22138787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-ligand docking guided by ligand pharmacophore-mapping experiment by NMR.
    Fukunishi Y; Mizukoshi Y; Takeuchi K; Shimada I; Takahashi H; Nakamura H
    J Mol Graph Model; 2011 Nov; 31():20-7. PubMed ID: 21940186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy.
    Maurer T
    Methods Enzymol; 2011; 493():469-85. PubMed ID: 21371602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.