These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25256955)

  • 1. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
    Vargas-Barbosa NM; Geise GM; Hickner MA; Mallouk TE
    ChemSusChem; 2014 Nov; 7(11):3017-20. PubMed ID: 25256955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting.
    McDonald MB; Ardo S; Lewis NS; Freund MS
    ChemSusChem; 2014 Nov; 7(11):3021-7. PubMed ID: 25250978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode.
    Han JH; Jeong N; Kim CS; Hwang KS; Kim H; Nam JY; Jwa E; Yang S; Choi J
    Water Res; 2019 Dec; 166():115078. PubMed ID: 31542547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.
    Jin Z; Li P; Xiao D
    ChemSusChem; 2017 Feb; 10(3):483-488. PubMed ID: 27863111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes.
    Bui JC; Digdaya I; Xiang C; Bell AT; Weber AZ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52509-52526. PubMed ID: 33169965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells.
    Wang X; Rossi R; Yan Z; Yang W; Hickner MA; Mallouk TE; Logan BE
    Environ Sci Technol; 2019 Dec; 53(24):14761-14768. PubMed ID: 31713416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.
    McDonald MB; Bruce JP; McEleney K; Freund MS
    ChemSusChem; 2015 Aug; 8(16):2645-54. PubMed ID: 26204850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of toluene and water to methylcyclohexane and oxygen using niobium-doped strontium titanate photoelectrodes.
    Kalousek V; Wang P; Minegishi T; Hisatomi T; Nakagawa K; Oshima S; Kobori Y; Kubota J; Domen K
    ChemSusChem; 2014 Sep; 7(9):2690-4. PubMed ID: 25044371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK; Poncheri AJ; El-Sayed MA
    ACS Nano; 2011 Jun; 5(6):5056-66. PubMed ID: 21568298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater.
    Rozendal RA; Sleutels TH; Hamelers HV; Buisman CJ
    Water Sci Technol; 2008; 57(11):1757-62. PubMed ID: 18547927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.
    Rozendal RA; Hamelers HV; Molenkamp RJ; Buisman CJ
    Water Res; 2007 May; 41(9):1984-94. PubMed ID: 17343894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid bio-photo-electro-chemical cells for solar water splitting.
    Pinhassi RI; Kallmann D; Saper G; Dotan H; Linkov A; Kay A; Liveanu V; Schuster G; Adir N; Rothschild A
    Nat Commun; 2016 Aug; 7():12552. PubMed ID: 27550091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular water-oxidation catalysts for photoelectrochemical cells.
    Brimblecombe R; Dismukes GC; Swiegers GF; Spiccia L
    Dalton Trans; 2009 Nov; (43):9374-84. PubMed ID: 19859588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.
    Kanan MW; Nocera DG
    Science; 2008 Aug; 321(5892):1072-5. PubMed ID: 18669820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research.
    Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF
    ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells.
    Harnisch F; Schröder U; Scholz F
    Environ Sci Technol; 2008 Mar; 42(5):1740-6. PubMed ID: 18441829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis.
    Nikonenko VV; Pismenskaya ND; Belova EI; Sistat P; Huguet P; Pourcelly G; Larchet C
    Adv Colloid Interface Sci; 2010 Oct; 160(1-2):101-23. PubMed ID: 20833381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.