These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 25257598)
1. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability. Wu JP; Li M; Zhou Y; Yang LR; Xu G Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: The first member of a new bacterial lipase family XVI. Li M; Yang LR; Xu G; Wu JP J Biotechnol; 2016 Jun; 228():30-36. PubMed ID: 27117245 [TBL] [Abstract][Full Text] [Related]
3. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Li M; Yang LR; Xu G; Wu JP Bioresour Technol; 2013 Nov; 148():114-20. PubMed ID: 24050922 [TBL] [Abstract][Full Text] [Related]
4. Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase. Gatti-Lafranconi P; Caldarazzo SM; Villa A; Alberghina L; Lotti M FEBS Lett; 2008 Jun; 582(15):2313-8. PubMed ID: 18534193 [TBL] [Abstract][Full Text] [Related]
5. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation. Zhang L; Ding Y Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764 [TBL] [Abstract][Full Text] [Related]
6. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Kumar V; Yedavalli P; Gupta V; Rao NM Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations. Kumar R; Singh R; Kaur J Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523 [TBL] [Abstract][Full Text] [Related]
8. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol. Gihaz S; Kanteev M; Pazy Y; Fishman A Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852 [TBL] [Abstract][Full Text] [Related]
9. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis. Ni Z; Jin R; Chen H; Lin X Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of novel organic solvent tolerant 98kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Waghmare SR; Gurav AA; Mali SA; Nadaf NH; Jadhav DB; Sonawane KD Protein Expr Purif; 2015 Mar; 107():1-6. PubMed ID: 25462807 [TBL] [Abstract][Full Text] [Related]
11. Changes of Thermostability, Organic Solvent, and pH Stability in Ishak SNH; Masomian M; Kamarudin NHA; Ali MSM; Leow TC; Rahman RNZRA Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137725 [TBL] [Abstract][Full Text] [Related]
12. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479 [TBL] [Abstract][Full Text] [Related]
13. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach. Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211 [TBL] [Abstract][Full Text] [Related]
14. Role of Q177A and K173A/Q177A substitutions in thermostability and activity of the ELBn12 lipase. Farrokh P; Yakhchali B; Karkhane AA Biotechnol Appl Biochem; 2018 Mar; 65(2):203-211. PubMed ID: 28722269 [TBL] [Abstract][Full Text] [Related]
15. Residue Tyr224 is critical for the thermostability of Geobacillus sp. RD-2 lipase. Wu L; Liu B; Hong Y; Sheng D; Shen Y; Ni J Biotechnol Lett; 2010 Jan; 32(1):107-12. PubMed ID: 19763406 [TBL] [Abstract][Full Text] [Related]
16. [Screening for mutants with thermostabe lipase A from Burkholderia sp. ZYB002]. Liu Y; Qiu L; Huang J; Zhao B; Wang Z; Zhu X; Gao Y; Shu Z Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):748-54. PubMed ID: 26563000 [TBL] [Abstract][Full Text] [Related]
17. Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis AT2. Kamarudin NH; Rahman RN; Ali MS; Leow TC; Basri M; Salleh AB Mol Biotechnol; 2014 Aug; 56(8):747-57. PubMed ID: 24771007 [TBL] [Abstract][Full Text] [Related]
18. Essential role of Gly33 in a novel organic solvent-tolerant lipase from Serratia marcescens ECU1010 as determined by site-directed mutagenesis. Li SX; Ma Q; Lin K; Wu JJ; Wu YX; Xu JH Appl Biochem Biotechnol; 2014 Mar; 172(6):2945-54. PubMed ID: 24469584 [TBL] [Abstract][Full Text] [Related]
19. Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution. Zhao G; Wang J; Tang Q; Lan D; Wang Y Mol Biotechnol; 2018 Apr; 60(4):319-328. PubMed ID: 29450814 [TBL] [Abstract][Full Text] [Related]
20. Influence of salts and metal nanoparticles on the activity and thermal stability of a recombinant chitinase from Stenotrophomonas maltophilia N4. Sosnowska ME; Jankiewicz U; Kutwin M; Chwalibog A; Gałązka A Enzyme Microb Technol; 2018 Sep; 116():6-15. PubMed ID: 29887018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]