These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 25257602)

  • 1. Fatty acid synthesis enzyme clans.
    Phan NN; Lee YK; Reilly PJ
    Biotechnol Lett; 2015 Feb; 37(2):417-27. PubMed ID: 25257602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural classification and properties of ketoacyl reductases, hydroxyacyl dehydratases and enoyl reductases.
    Cantu DC; Dai T; Beversdorf ZS; Reilly PJ
    Protein Eng Des Sel; 2012 Dec; 25(12):803-11. PubMed ID: 22915596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ThYme: a database for thioester-active enzymes.
    Cantu DC; Chen Y; Lemons ML; Reilly PJ
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D342-6. PubMed ID: 21045059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the beta-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core.
    Witkowski A; Joshi AK; Smith S
    Biochemistry; 2004 Aug; 43(32):10458-66. PubMed ID: 15301544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.
    Beld J; Lee DJ; Burkart MD
    Mol Biosyst; 2015 Jan; 11(1):38-59. PubMed ID: 25360565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydratase-specific probes for fatty acid and polyketide synthases.
    Ishikawa F; Haushalter RW; Burkart MD
    J Am Chem Soc; 2012 Jan; 134(2):769-72. PubMed ID: 22188524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural biology of type II fatty acid biosynthesis.
    White SW; Zheng J; Zhang YM; Rock
    Annu Rev Biochem; 2005; 74():791-831. PubMed ID: 15952903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary origins of the multienzyme architecture of giant fungal fatty acid synthase.
    Bukhari HST; Jakob RP; Maier T
    Structure; 2014 Dec; 22(12):1775-1785. PubMed ID: 25456814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel protein domains required for the expression of an active dehydratase fragment from a polyunsaturated fatty acid synthase.
    Oyola-Robles D; Gay DC; Trujillo U; Sánchez-Parés JM; Bermúdez ML; Rivera-Díaz M; Carballeira NM; Baerga-Ortiz A
    Protein Sci; 2013 Jul; 22(7):954-63. PubMed ID: 23696301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis.
    Ikeda M; Kanao Y; Yamanaka M; Sakuraba H; Mizutani Y; Igarashi Y; Kihara A
    FEBS Lett; 2008 Jul; 582(16):2435-40. PubMed ID: 18554506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the mechanism and inhibition of the β-hydroxydecanoyl-acyl carrier protein dehydratase from Pseudomonas aeruginosa.
    Moynié L; Leckie SM; McMahon SA; Duthie FG; Koehnke A; Taylor JW; Alphey MS; Brenk R; Smith AD; Naismith JH
    J Mol Biol; 2013 Jan; 425(2):365-77. PubMed ID: 23174186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis.
    Sacco E; Covarrubias AS; O'Hare HM; Carroll P; Eynard N; Jones TA; Parish T; Daffé M; Bäckbro K; Quémard A
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14628-33. PubMed ID: 17804795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diversity and molecular modelling analysis of B₁₂ and B₁₂-independent glycerol dehydratases.
    Liu Y; Gallo AA; Bajpai RK; Chistoserdov A; Nelson A; Segura L; Xu W
    Int J Bioinform Res Appl; 2010; 6(5):484-507. PubMed ID: 21224206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical-mediated dehydration reactions in anaerobic bacteria.
    Buckel W; Martins BM; Messerschmidt A; Golding BT
    Biol Chem; 2005 Oct; 386(10):951-9. PubMed ID: 16218867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus.
    Volkov A; Khoshnevis S; Neumann P; Herrfurth C; Wohlwend D; Ficner R; Feussner I
    Acta Crystallogr D Biol Crystallogr; 2013 Apr; 69(Pt 4):648-57. PubMed ID: 23519674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emergence of catalytic and structural diversity within the beta-clip fold.
    Iyer LM; Aravind L
    Proteins; 2004 Jun; 55(4):977-91. PubMed ID: 15146494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden Markov model-based method and its application on complete genomes.
    Kallberg Y; Persson B
    FEBS J; 2006 Mar; 273(6):1177-84. PubMed ID: 16519683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Categorisation of sugar acid dehydratases in Aspergillus niger.
    Motter FA; Kuivanen J; Keränen H; Hilditch S; Penttilä M; Richard P
    Fungal Genet Biol; 2014 Mar; 64():67-72. PubMed ID: 24382357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction.
    Gourley DG; Shrive AK; Polikarpov I; Krell T; Coggins JR; Hawkins AR; Isaacs NW; Sawyer L
    Nat Struct Biol; 1999 Jun; 6(6):521-5. PubMed ID: 10360352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.