These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 25257869)

  • 1. What is the relationship between the acute muscle protein synthesis response and changes in muscle mass?
    Mitchell CJ; Churchward-Venne TA; Cameron-Smith D; Phillips SM
    J Appl Physiol (1985); 2015 Feb; 118(4):495-7. PubMed ID: 25257869
    [No Abstract]   [Full Text] [Related]  

  • 2. Last Word on Viewpoint: What is the relationship between the acute muscle protein synthetic response and changes in muscle mass?
    Mitchell CJ; Churchward-Venne TA; Cameron-Smith D; Phillips SM
    J Appl Physiol (1985); 2015 Feb; 118(4):503. PubMed ID: 25684757
    [No Abstract]   [Full Text] [Related]  

  • 3. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational control of muscle mass.
    Dupont-Versteegden EE; McCarthy JJ
    J Appl Physiol (1985); 2019 Aug; 127(2):579-580. PubMed ID: 31446832
    [No Abstract]   [Full Text] [Related]  

  • 5. Acute resistance exercise augments integrative myofibrillar protein synthesis.
    Gasier HG; Fluckey JD; Previs SF; Wiggs MP; Riechman SE
    Metabolism; 2012 Feb; 61(2):153-6. PubMed ID: 21864869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in rat muscle fiber with forceful exercises.
    Gordon EE; Kowalski K; Fritts M
    Arch Phys Med Rehabil; 1967 Nov; 48(11):577-82. PubMed ID: 6060786
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway.
    Mitch WE; Goldberg AL
    N Engl J Med; 1996 Dec; 335(25):1897-905. PubMed ID: 8948566
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanotransduction and the regulation of protein synthesis in skeletal muscle.
    Hornberger TA; Esser KA
    Proc Nutr Soc; 2004 May; 63(2):331-5. PubMed ID: 15294051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic approaches for muscle wasting disorders.
    Lynch GS; Schertzer JD; Ryall JG
    Pharmacol Ther; 2007 Mar; 113(3):461-87. PubMed ID: 17258813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-binding capacity of troponin of skeletal muscle in various muscle diseases.
    Furukawa T; Peter JB
    Neurology; 1970 Apr; 20(4):414. PubMed ID: 5535072
    [No Abstract]   [Full Text] [Related]  

  • 11. [Biochemical studies on experimental chloroquine myopathy].
    Sano M
    Rinsho Shinkeigaku; 1985 May; 25(5):627-35. PubMed ID: 4028583
    [No Abstract]   [Full Text] [Related]  

  • 12. Syndrome characterized by loss of muscle strength experienced by athletes during intensive training program.
    Nichols BL; Spence DW; Hazlewood CF; Librik L; Sachen JB; Clayton GW
    Metabolism; 1972 Mar; 21(3):187-95. PubMed ID: 5060760
    [No Abstract]   [Full Text] [Related]  

  • 13. Recent advances in muscle research.
    Sanger JM; Sanger JW
    Anat Rec (Hoboken); 2014 Sep; 297(9):1539-42. PubMed ID: 25125167
    [No Abstract]   [Full Text] [Related]  

  • 14. mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle.
    Ogasawara R; Kobayashi K; Tsutaki A; Lee K; Abe T; Fujita S; Nakazato K; Ishii N
    J Appl Physiol (1985); 2013 Apr; 114(7):934-40. PubMed ID: 23372143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Getting folded: chaperone proteins in muscle development, maintenance and disease.
    Smith DA; Carland CR; Guo Y; Bernstein SI
    Anat Rec (Hoboken); 2014 Sep; 297(9):1637-49. PubMed ID: 25125177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men.
    Wilson JM; Lowery RP; Joy JM; Walters JA; Baier SM; Fuller JC; Stout JR; Norton LE; Sikorski EM; Wilson SM; Duncan NM; Zanchi NE; Rathmacher J
    Br J Nutr; 2013 Aug; 110(3):538-44. PubMed ID: 23286834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.
    Abe T; Loenneke JP; Fahs CA; Rossow LM; Thiebaud RS; Bemben MG
    Clin Physiol Funct Imaging; 2012 Jul; 32(4):247-52. PubMed ID: 22681600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neuromuscular system and aging: involutions and implications].
    Paillard T
    Geriatr Psychol Neuropsychiatr Vieil; 2013 Dec; 11(4):379-87. PubMed ID: 24333816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of myofibrillar and soluble proteins in cell-free systems and in intact cultured muscle cells from newborn polymyopathic hamsters.
    Bester AJ; Gevers W
    J Mol Cell Cardiol; 1975 May; 7(5):325-44. PubMed ID: 1142449
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular basis for the role of selenium in muscle development and function.
    Lescure A; Deniziak M; Rederstorff M; Krol A
    Chem Biodivers; 2008 Mar; 5(3):408-13. PubMed ID: 18357550
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.